Discrete Mathematics

Study Material

Unit - I: MATHEMATICAL LOGIC

INTRODUCTION

Unit I - Prepositional Logic

1.1. Statement and Notations
1.2. Connectives -

1.2.1. Negation

1.2.2. Conjunction
1.2.3. Disjunction
1.3. Well-formed Formulas
1.3.1. Statement Formulas
1.3.2. Truth Tables
1.4. Tautologies
1.5. Equivalence of Formulas
1.6. Tautological Implications
1.7. Theory of Inference
1.7.1.Validity using truth tables
1.8. Rules of inference
1.8.1. Consistency of premises and
1.8.2. indirect method of proof
1.9. Normal Forms
1.9.1. Disjunctive Normal Forms (DNF)
1.9.2. Conjunctive Normal Forms (CNF)
1.9.3. Principal Disjunctive Normal Forms (PDNF)
1.9.4. Principal Conjunctive Normal Forms (PCNF)
1.10. Automatic theorem proving

INTRODUCTION TO DM

Mathematical topics that are discussed are logic, set theory, algebraic structures, graph theory. These topics will support many areas of computer science such as automata, artificial intelligence, syntactic analysis, switching theory, programming languages
$>$ Logic is the study and analysis of the nature of valid arguments.
>Set theory, relations, recursive functions are mostly used in programming languages.
$>$ Algebraic structures are used for syntactic analysis, error detecting and correcting codes.
$>$ Graph theory is used in minimal-path problems, fault detection and diagnosis in computers
The reasoning tool by which valid inferences can be drawn from a set of premises.
\checkmark A statement cannot be further divided into smaller statements is called Primitive or Primary or Atomic or Simple statements.
\checkmark A statement cannot be Primitive or Primary or Atomic or Simple, It is called molecular or Compound Statement.
\checkmark The statements are denoted by the distinct symbols $A, B, C, \ldots P, Q, \ldots$ And they have one and only one of two possible truth-values.
\checkmark True (T or 1) - Truth of a logical statement
\checkmark False (F or 0) - Falsity of a logical statement
Ex: P : The weather is cloudy.
Q : It is raining today.
R : It is snowing.

Uses of Logic reasoning

\checkmark In Mathematics to prove theorems.
\checkmark In computer science to verify the correctness of programs and to prove theorems.
\checkmark In Natural and Physical Sciences to draw conclusions from experiments.
\checkmark In Social Sciences, and everyday lives to solve a multitude of problems.

1.1. Statements/Propositions and notations:

In symbolic logic we study arguments. The basic building blocks of arguments are declarative sentences called Propositions or Statements.
$0 r$
Statement: Adeclarative sentence which is either true or false but not both.

Example:

\checkmark The Sun rises in the East	-Statement - True
\checkmark Smoking is injurious to health.	-Statement - True
\checkmark She is an Engineering student	-Statement - True
\checkmark The Delhi is capital of the India	- Statement - True
$\sqrt{2+3} \mathbf{3} 5$	-Statement - True

MAT-1014 R. Udhayakumar

Module-1 Mathematical logic and Statement calculus.
Statement or Proposition
A proposition (or) statement is a declarative Sentence that is either true or false, but not both.
Example:-
(1) Rose is a beautifus flower (T)
(2) $5+5=12$ (F)

Note:- The truth Values True and False are denoted by the symbol's T and F respectively. Sometimes it is also denoted by 1 and 0 , where 1 stands for true and 0 stands for false.

Types of statements
C) Simple
(2) Compound
(1) Simple (or) Atomic (or) Primary (pr) primitive statement The statements which do not contain axis of the correctives are called Atomic staterenents
Ex:. (i) 3 is a prise number (T)
(i)) Canada is a country (T)
(2) Compound statement

New statements can be formed from atomic statements through the use of sentential connectives.

The resulting statements are called compound statements.
Ex:- If p is a prime number, then the divisor of p ' are 's' and ' p ' itself.

Truth Table
A table showing alt possible truth values of a compound statement is called the truth table.

Logical Connectives

* Negation (7 or ~) Not
* Conjunction (λ and)
* Disjunction (V or)
\Rightarrow Conditional (Implication \rightarrow) if
\Rightarrow Bi-Londitional (\longleftrightarrow jiff)
* Negation (7 or N) NOE

If P is a proposition, then not P is also a proposition.

Ex: If P : London is a city.
them TP or : London is not a city.
Rule:- If P is true, then $7 P$ is false and if P is false then $7 P$ is true.

Truth Table

P	$T P$
T	F
F	T

A. Conjunction (\wedge and)

The Cajunction of two statements P and Q is also a Statement denoted by $P \wedge Q$. We use the connective And for corigunction.
Eg: $p: \quad 2+3=5$
Q: 5 is a composite number.
So, $P \wedge Q: 2+3=5$ and 5 is a composite number.
Rule:- $(P \wedge Q)$ is true if both P and Q are true, otherwise false.

Truth Table

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

* Disjunction (V or)

The disjunction of two statements P and Q is also a statement denoted by PVQ. We use the connective or for disjunction.
Rule:- $(P \vee Q$) is true, if either P or Q is true and it is false when both P and Q are false.

Truth Table

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

+ Conditional statement (\rightarrow)
"If P, then Q " is called a conditional statement.
Rule:- The statement $P \rightarrow Q$ has a truth value F when Q has the truth value F and P has the truth value T; otherwise it has the truth value T.

Truth Table

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

\& Bi-conditional (\longleftrightarrow)
" P if and only if Q " ie. " p iff Q " is called a bi-conditional statement and is defined as

$$
P \leftrightarrow Q:(P \rightarrow Q) \wedge(Q \rightarrow P)
$$

Truth Table

P	Q	$P \rightarrow Q$	$Q \rightarrow P$	$(\beta \rightarrow Q) \wedge(Q \rightarrow P)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

\therefore The proposition is said to be tanieruy if its eternity Tautologies value is T for any assignment io kith value to it

A statement formula which is always true Whatever may be the truth values of its components, is called a tautology or a universally valid formula. Examples
(1) $(p \wedge q) \rightarrow p$
(1) $\quad q \rightarrow(p \vee q)$
(3) $(p \vee q) \longleftrightarrow(q \vee p)$

P	Q	$P \wedge Q$	$P \wedge Q \rightarrow P$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

Contradiction
A statement that is always false is called a Contraction.
Examples
ci) $p \wedge \neg p$
(2) $(P \vee Q) \wedge(\neg P \wedge \neg Q)$

Contingency A statement fromnla that is neither tuitoloys carr untadiction
A statement formula that can be either true or false ie, neither a tautology nor a contradiction, is called a contingency.
Example (1) $p \leftrightarrow q$
(2) $(P \vee \neg Q) \rightarrow P \wedge Q$

P	$7 P$	$P \wedge 7 P$
T	F	F
F	T	F

Logical Equivalence

P	Q	$P \rightarrow Q$	$Q \rightarrow P$	$P M$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

Two statement formula's are said to be Logically equivdent if their truth columns are identical.

Such statervents are represented by $P \equiv Q$ (or) $p \Leftrightarrow Q$
Note:- Equivalence is transitive. Because if $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$.

Example

1. P.T $\quad(p \rightarrow q) \Leftrightarrow(7 p \vee q)$

p	q	$p \rightarrow q$	$7 p$	$7 p \vee q$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

$H^{+\omega}$ 2. $\quad S: P \nRightarrow Q \Leftrightarrow(P \rightarrow Q) \wedge(Q \rightarrow P)$

P	Q	$P \rightarrow Q$	$Q \rightarrow P$	$P \rightarrow Q$	$(P \rightarrow Q) \wedge(Q+P)$	S
T						
T	F	F	T	F	F	T
F	T	T	F	F	F	T
F	F	T	T	T	T	T

A list of equivalent formulae

1. Idempotent laws
$P \vee P \Leftrightarrow P \& P \wedge P \Leftrightarrow P$
2. Associative Laws

$$
\begin{aligned}
& (P \vee q) \vee \gamma \Leftrightarrow P \vee(q \vee \gamma) K \\
& (P \wedge Q) \wedge R \Leftrightarrow P \wedge(Q \wedge R)
\end{aligned}
$$

3. Distributive Laws

$$
\begin{aligned}
& P \vee(Q \wedge R) \Leftrightarrow(P \vee Q) \wedge(P \vee R) \nless \\
& P \wedge(Q \vee R) \Leftrightarrow P \wedge Q) \vee(P \vee R)
\end{aligned}
$$

4. Commentative laws

$$
\begin{array}{r}
P \vee Q \Leftrightarrow Q \vee P K \\
P \wedge Q \Leftrightarrow Q \wedge P
\end{array}
$$

5. Identity laws

$$
P \vee F \Leftrightarrow P, P \wedge T \Leftrightarrow P
$$

b. Dominant laws

$$
P \cup T \Leftrightarrow T, P \wedge F \Leftrightarrow F
$$

7. Negation Laws
$P \vee \neg P \Leftrightarrow T, P \wedge T P \Leftrightarrow F$
8. Absorption Laws

$$
P \wedge(P \vee Q) \Leftrightarrow P
$$

9. De Morgan's Laws

$$
\begin{aligned}
& 7(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q \quad \\
& 7(P \wedge Q) \Leftrightarrow \neg P \vee \neg Q
\end{aligned}
$$

Example

1. Without using truth table, show that $Q \vee(P \wedge \neg Q) \vee(\neg P \wedge \neg Q)$ is a tautology.

Solution:-
$Q \vee(P \wedge \neg Q) \vee(\neg P \wedge \neg Q)$
$\Leftrightarrow((Q \vee P) \wedge(Q \vee \neg Q)) \vee(\neg P \wedge \neg Q) \quad$ Distributive law
$\Leftrightarrow(Q \vee P \wedge T) \vee(\neg P \wedge \neg Q)$ Negation law
$\Leftrightarrow \quad Q \vee P) \vee(T P \wedge T Q)$
$\Leftrightarrow(Q \vee P) \vee \neg(P \vee Q)$ De Margon's Law
$\Leftrightarrow(P \vee Q) \vee \neg(P \vee Q)$ commentative Law
$\Leftrightarrow T$ tautology.
2. S.T $(7 P \wedge(7 Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R) \Leftrightarrow R$

Son:-
$(7 P \wedge(7 Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R)$
$\Leftrightarrow(7 P \wedge(T Q \wedge R)) \vee[(Q \vee P) \wedge R]$ by distributive laws.
$\Leftrightarrow(\square P \wedge \neg Q) \wedge R) \vee((Q \vee P) \wedge R)$ by associative laws
$\Leftrightarrow((\neg P \wedge \neg Q) \vee(Q \vee P)) \wedge R$ by distributive lavs
$\Leftrightarrow(T(P \vee Q) \vee(P \vee Q)) \times R$ by he Maroon's Laws commentative lams
$\Leftrightarrow \quad T \wedge R \quad$ Negation Laws
$\Leftrightarrow \quad R \quad$ Identity laws
HeW

1. $((P \vee Q) \wedge \neg(\neg P \wedge(\neg Q \vee \neg R))) \vee(\neg P \wedge \neg Q) \vee(\neg P \wedge \neg R)$ is a tautology
2. $\quad P \nLeftarrow Q \Leftrightarrow(P \rightarrow Q) \wedge(Q \rightarrow P)$
3. $(P \wedge Q) \rightarrow(P \vee Q)$ is a tautology.

Tautology Implications
A statement formula A is said to tautologigally imply another statement formula B inf $A \rightarrow B$ is a tautology. In symbol, it is denoted by $A \Rightarrow B$.

Note:-
$A \Rightarrow B$ means that $A \rightarrow B$ is a tautology.

Some Tautology implications
(1) $P \wedge Q \Rightarrow P$
(b) $7(P \rightarrow Q) \Rightarrow P$
(2) $P \wedge Q \Rightarrow Q$
(7) $T(P \rightarrow Q) \Rightarrow 7 Q$
(3) $P \Rightarrow P \vee Q$
(8) $P \wedge(P-Q) \Rightarrow Q$
(4) $7 \beta \Rightarrow p \rightarrow Q$
(9) $T Q \wedge(P \rightarrow Q) \Rightarrow 7 P$
(5) $Q \Rightarrow P \rightarrow Q$
(10) $7 P \wedge(P \vee Q) \Rightarrow Q$,

Note
4) Correctives Λ, V and \rightleftarrows are symmetric

Since, $\quad P \wedge Q \Leftrightarrow Q \star P$
$P \vee Q \Leftrightarrow Q \vee P$

$$
P \rightleftarrows Q \Leftrightarrow Q \rightleftarrows P
$$

But \rightarrow is reed not be symmetric.
i.e. $\beta \rightarrow Q$ is not equivalent to $Q \rightarrow P$ i.e: $P \rightarrow Q \notin Q \rightarrow P$.
(2) Converse For any statement formula, $P \rightarrow Q$ than the statement formula $\leftrightarrow P$ is called its converse.
(3). Inverse For $P \rightarrow Q$, $\neg P \rightarrow T Q$ is called its inverse.
(4) Contrapositive for $P \rightarrow Q, 7 Q \rightarrow T P$ is called its Contrapositive.

Discrete Mathematics (DM)- (7F302)

Unit 2 : First order logic

2.1.Predicates
2.2.Quantifiers
2.3.Free and Bound Variables
2.4. Inference theory or Rules of Inference

2.1. Predicate Calculus

The propositional logic is not powerful enough to represent all types of statements that are used in Computer Science and Mathematics, or to express certain types of relationship between propositions such as equivalence.

For example, the statement " X is greater than 1 ", where X is a variable, is not a proposition because you can not tell whether it is true or false unless you know the value of \mathbf{X}.

Thus the propositional logic can not deal with such sentences. However, such statements appear quite often in Mathematics and we want to do inferenceing on those statements. $>$ Not all birds fly" is equivalent to "Some birds don't fly". >'Not all integers are even" is equivalent to 'Some integers are not even'. >"Not all cars are expensive" is equivalent to "Some cars are not expensive". Each of those propositions is treated independently of the others in propositional logic.

Example: if Prepresents "Not all birds fly" and
Q represents 'Some integers are not even',
then there is no mechanism in propositional logic to find out that P is equivalent to \mathbf{Q}.
$>$ Thus we need more powerful logic to deal with these and other problems. The predicate logic is one of such logic and it addresses these issues among others.

2.1. Predicates:

A predicate is a verb phrase template that describes a property of objects, or a relationship among objects represented by the variables.

The logic based upon the analysis of predicates in any statement is called Predicate logic.

Symbolize a predicate by a capital letter and names of individuals or objects in general by small letters.

Example 1: The statement ' x is a student' has two parts.
Part 1: The variable x is the subject of the statement.
Part 2: The predicate ' is a student' refers to a property that the subject of the statement can have.

We can denote the statement ' x is a student' by $S(x)$ where S denotes the predicate and x is a variable.

In general any statement of the type ' \mathbf{p} is \mathbf{Q} ' where \mathbf{Q} is the predicate and p is the subject can be denoted by $\mathbf{Q}(\mathbf{p})$

Example 2: Amulya is a Student and This painting is Blue.

$$
S(\mathbf{a}) \wedge \mathbf{B}(\mathbf{p}) .
$$

A predicate requiring $\mathbf{m}(\mathbf{m}>\mathbf{0})$ names or objects is called an \mathbf{m}-place predicate.
Example 3: Amulya is a Student
'is a student' is a 1-place predicate because it is related to one object(Amulya).

Example 4: Naveen is taller than Amul.

The predicate 'is taller than' is a 2-place predicate.
The representation is $\mathbf{T}(\mathbf{n}, \mathbf{a})$
When $\mathbf{m}=0$, then we shall call a statement 0 -place predicate because no names are associated with a statement.

A Simple statement function of one variable is defined to be an expression consisting of a predicate symbol and an individual variable.

We can form 'Compound statement functions by combining one or more simple statement functions and the logical connectives.
$\mathbf{M}(x) \mathbf{V N}(x), \mathbf{M}(x) \wedge \mathbf{N}(x), \mathbf{M}(x) \rightarrow \mathbf{N}(x), \sim \mathbf{M}(x)$ and $\mathbf{M}(x) \leftrightarrow N(x)$.

Some restrictions can be introduced by limiting the class of objects under considerations. These limitation means that the variable which are mentioned stand for only those objects which are members of particular set or class. Such a restricted class is called the universe of discourse or the domain of individuals or simply the universe.

Example 5: consider the statement
"Given any positive integer, there is greater positive integer"
in this case the universe of discourse is the set of positive integers.

2.2. Quantifiers

The statements involve words that indicate quantity such as 'all', 'some', 'none', or 'one'. These words indicates quantity and they are called Quantifiers.

Sentence

Some men are tall.
All birds have wings.
No air balloon is perfectly round. All air balloons fail to be perfectly round.
There is a real number less than 11. Atleast one real number is less than 11.
There are two types of quantifiers.

1. Universal
2. Existential

Universal quantifier: The quantifier "all" is called as the Universal quantifier, Denoted as $\forall \mathbf{x}$.

The symbol $\forall x$ Represents each of the following phrases have same meaning.
\checkmark For all \mathbf{x}
\checkmark For every x
\checkmark For each x
\checkmark Every thing x is such that
\checkmark Each thing x is such that
Existential quantifier: The quantifier "some" is the Existential quantifier. Denoted as $\exists \mathrm{x}$.
The symbol $\exists \mathrm{x}$ Represents each of the following phrases have same meaning
\checkmark For some x
\checkmark Some x is such that
\checkmark There exists an x such that
\checkmark There is an x such that
\checkmark There is at least one x such that

Example 1: Some thing is Good

Solution : "There is atleast one x such that x is good"
The Symbolic form: ($\exists \mathbf{x}) \mathbf{G}(\mathbf{x})$

Example 2: Every thing is Good

Solution: "For all x, x is good"
The Symbolic form: $(\forall \mathbf{x}) \mathbf{G}(\mathbf{x})$

Example 3: Nothing is Good

Solution : "For all \mathbf{x}, \mathbf{x} is not good"
The Symbolic form: $(\forall \mathbf{x}) \sim \mathbf{G}(\mathbf{x})$

Example 4: Something is not Good

Solution : "There is atleast one x such that x is good"
The Symbolic form: $(\exists \mathbf{x}) \sim \mathbf{G}(\mathbf{x})$

Equivalent Formulas:

\checkmark "All true" means the same as "None false".
\checkmark "All false" means the same as "None true".
\checkmark "Not all true" means the same as "Atleast one false".
\checkmark "Not all false" means the same as "Atleast one true".

$$
\begin{array}{lll}
\checkmark(\forall \mathbf{x}) \mathbf{F}(\mathbf{x}) & \Leftrightarrow & \sim(\exists \mathbf{x}) \sim \mathbf{F}(\mathbf{x}) \\
\checkmark(\forall \mathbf{x}) \sim \mathbf{F}(\mathbf{x}) & \Leftrightarrow & \sim(\exists \mathbf{x}) \mathbf{F}(\mathbf{x}) \\
\checkmark \sim[\forall \mathbf{x}, \mathbf{F}(\mathbf{x})] & \Leftrightarrow & (\exists \mathbf{x}) \sim \mathbf{F}(\mathbf{x}) \\
\checkmark \sim[(\forall \mathbf{x}) \sim \mathbf{F}(\mathbf{x})] & \Leftrightarrow & (\exists \mathbf{x}) \mathbf{F}(\mathbf{x})
\end{array}
$$

The symbol \exists ! x is read there is a unique x such that ... or There is one and only one x such that ...

Ex: There is one and only one even prime.
\exists ! x, [x is an even prime]
$\exists!\mathbf{x}, \mathbf{P}(\mathbf{x})$ where $\mathbf{P}(\mathbf{x}) \equiv \mathrm{x}$ is an even prime integer.
To form the negation of a statement involving one quantifier, change the quantifier form universal to existential, or from existential to universal, and negate the statement, which it quantifies.

Statement	Its Negation
$\forall \mathbf{x} \mathbf{P}(\mathbf{x})$	$[\exists \mathbf{x} \sim \mathbf{P}(\mathbf{x})]$
$\exists \mathbf{x} \mathbf{P}(\mathbf{x})$	$[\forall \mathbf{x}\{\sim \mathbf{P}(\mathbf{x})\}]$

Example 1: All monkeys have tails

Solution : "For all x , if x is a monkey, then x has tail"
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \mathbf{T}(\mathbf{x})]$
Example 2: No monkey has a tail.
Solution : "For all x, if x is a monkey, then x has no tail"
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \sim \mathbf{T}(\mathbf{x})]$

Example 3: Some monkeys have tails

Solution : "There is an x such that, x is a monkey and x has tail"
The Symbolic form: $(\exists \mathbf{x})[\mathbf{M}(\mathbf{x}) \wedge \mathbf{T}(\mathbf{x})]$
Example 4: Some monkeys have no tails
Solution : "There is an x such that, x is a monkey and x has no tail"

CSE-E5 \& CS- -2022-23

Example 1: All men are good.
Solution : "For all x , if x is a man, then x is Good."
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \mathbf{G}(\mathbf{x})]$
Example 2: No men are good.
Solution : "For all x , if x is a man, then x is not Good"
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \sim \mathbf{G}(\mathbf{x})]$
Example 3: Some men are good.
Solution : "There is an x such that, x is a man and x is Good."
The Symbolic form: $(\exists \mathbf{x})[\mathbf{M}(\mathbf{x}) \wedge \mathbf{G}(\mathbf{x})]$
Example 4: Some men are not good.
Solution : "There is an x such that, x is a man and x is not tail"
Ther ${ }^{1123 / 20083}$ lic form: $(\exists \mathbf{x})$ [MPXreenivesarag DM-UNIT-II-II
CSE - E5 \& CS- -2022-23

Write the following sentences is the closed form or Symbolic form.

1. Some people who trust others one rewarded.
2. If any one is good then john is good.
3. He is ambitious or no one is ambitious.
4. Some one is teasing
5. It is not true that all roads lead to rome.
```
Solution : Let
    P(x): x is a Person
    T(x) :Trust others
    R(x) : is rewarded
    G(x) : is good
    A(x) : is ambitious
    Q(x) : is teasing
    S(x) : is a road
    11/23/2022(x) : leads to Rome
```

1: Some people who trust others one rewarded.
Solution : "There is one x such that, x is a person, x trusts others and x is rewarded."
The Symbolic form: $(\exists \mathbf{x})[\mathbf{P}(\mathbf{x}) \wedge \mathbf{T}(\mathbf{x}) \wedge \mathbf{R}(\mathbf{x})]$
2: If any one is good then john is good.
Solution : "If there is one x such that x is a person and x is good then john is good."
The Symbolic form: $(\exists \mathbf{x})[\mathbf{P}(\mathbf{x}) \wedge \mathbf{G}(\mathbf{x})] \rightarrow \mathbf{G}(\mathbf{J o h n})$

3: He is ambitious or no one is ambitious.
Solution : He represents a particular person. Let that person be y. so "y is ambitious or for all \mathbf{x}, if \mathbf{x} is person then x is not ambitious."

The Symbolic form: $\mathbf{A}(\mathbf{y}) \mathbf{V}((\forall \mathbf{x})[\mathbf{P}(\mathbf{x}) \rightarrow \sim \mathbf{A}(\mathbf{x})]$

4: Some one is teasing
Solution : "There is one x such that, x is a person and x is teasing"
The Symbolic form: $(\exists \mathbf{x})[\mathbf{P}(\mathbf{x}) \wedge \mathbf{Q}(\mathbf{x})]$

5: It is not true that all roads lead to rome.
Solution : The statement can be written as

$$
\begin{gathered}
\sim(\forall \mathbf{x})[\mathbf{S}(\mathbf{x}) \rightarrow \mathrm{L}(\mathbf{x})] \\
\text { Or } \\
(\exists \mathrm{x})[\mathbf{S}(\mathbf{x}) \wedge \sim \mathrm{L}(\mathbf{x})]
\end{gathered}
$$

Translate each of the following statements into symbols, using quantifiers,variables, and predicate symbols.
1.All birds can fly.
2.Not all birds can fly.
3.All babies are illogical.
4.Some babies are illogical.
5.If x is a man, then x is a giant.
6.Some men are giants.
7.Some men are not giants.
8. All men are giants.
9.No men are giants.
10.There is a student who likes mathematics but not history.
11. x is an odd integer and x is prime.
12. For all integers x, x is odd and x is prime.
13. Fوr $11 / 23$ each integer x, x is odd and x is is prime.
14. There is an integer x such that x is odd and is prime
15. Not every actor is talented who is famous.
16. Some nos. are rational.
17. Some nos. are not rational.
18. Not all nos. are rational.
19. Not every graph is planar.
20. If some students are lazy, then all students are lazy.
21. x is rational implies that x is real.
22. Not all cars have Carburetors.
23. Some people are either religious or pious.
24. No dogs are intelligent.
25. All babies are illogical.
26. Every no. either is negative or has a square root.
27. Some numbers are not real.
28. Every connected and circuit free graph is a tree.
29. Not every graph is connected.

Statement formula in Predicate Calculus

$\mathbf{P}\left(\mathbf{x}_{1}, x_{2}, \ldots \ldots x_{n}\right)$ denotes an n-place predicate formula in which the letter \mathbf{P} is an n-place predicate and $x_{1}, x_{2}, \ldots . . x_{n}$ are objects or individual variables.
In general $P\left(x_{1}, x_{2}, \ldots . . x_{n}\right)$ will be called an atomic formula of predicate calculus.
Examples are $\mathbf{R}, \mathbf{Q}(\mathbf{x}), \mathbf{A}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\mathbf{A}(\mathbf{x}, \mathbf{y})$
A wff of predicate calculus formula is obtained by using the following rules.

1. An atomic formula is a wff.
2. If A is a formula, then $\sim A$ also a wff.
3. If A and B are wffs then $A \vee B, A \wedge B, A \rightarrow B$ and $A \leftrightarrow B$ are also wffs.
4. If A is wff x is any variable, then $\forall x A(x)$ and $\exists x A(x)$ are wff.
5. Only those formulas obtained by using rules(1) to (4) are wffs.

Free and Bound Variables

Generally predicate formulas contain a part of the form $(\forall x) \mathbf{P}(\mathbf{x})$ or $(\exists x) \mathbf{P}(\mathbf{x})$, such a part is called an x-bound part of the formula.

Any variable appearing in an x-bound part of a formula is called a bound variable, otherwise it is called free variable.

The formula $P(x)$ immediately following either $(\forall x)$ or $(\exists x)$ is described as the scope of the quantifier.

Example: $(\forall \mathbf{x}) \mathbf{A}(\mathbf{x}, \mathbf{y})$
Here the scope of $(\forall x)$ is $A(x, y)$
$A(x, y)$ is the scope of the quantifier
x is bounded occurrence.
y is free occurrence.

Valid Formula and Equivalences

Example 1: Show that $(\forall x) \mathbf{P}(\mathbf{x}) \rightarrow(\exists \mathbf{x}) \mathbf{P}(\mathbf{x})$ is a tautologically valid statement.
Sol: $(\forall \mathbf{x}) \mathbf{P}(\mathbf{x})$ is true in particular universe then the universe has atleast one object t in it and $P(t)$ is a true statement for every t in the universe. In particular $\mathbf{P}(\mathbf{t})$ must be true. Thus $(\exists \mathbf{x}) \mathbf{P}(\mathbf{x})$ is true. Therefore $(\forall \mathbf{x}) \mathbf{P}(\mathbf{x}) \rightarrow(\exists \mathbf{x}$ $\mathbf{P}(\mathbf{x})$ is a tautologically valid statement

if Why can't we use implication for the existential quantifier?

Example: All Apples are Delicious
Let F be the domain of fruits and
$A(x)$:is an apple $\quad D(x)$:is delicious
$\forall x \in F(A(x) \rightarrow D(x)) \quad$ says "any fruit, if it is an apple, then it is delicious," or simply, "apples are delicious fruit".
$\forall x \in F(A(x) \wedge D(x))$ says "any fruit, is an apple and is delicious", or simply "all fruit are delicious apples."

Example: Some Apples are Delicious

$\exists x \in F(A(x) \wedge D(x))$ says "some fruits, is an apple and is delicious," or simply "there is a delicious apple".
$\exists x \in F(A(x) \rightarrow D(x))$ says "there is some fruit, that if it were an apple then it would be delicious'".

Predicate calculus : theory of inference

The Generalization and Specification rules are
Quantified Propositions:

Fundamental rule US: (Universal Specification)

If a statement of a form $\forall x P(x)$ is assumed to be true, then the universal quantifier can be dropped to obtain $P(t)$ is true for an arbitrary object t in the universe. In symbols, he rule is,
$(\forall \mathbf{x}) \mathbf{P}(\mathbf{x})$
$\therefore \mathbf{P}(\mathbf{t})$ for all \mathbf{t}
Fundamental Rule UG: (Universal Generalisation)
If a statement $\mathbf{P}(\mathbf{t})$ is true for all \mathbf{t} of the universe, then the universal quantifier may be prefixed to obtain $(\forall \mathbf{x}) \mathbf{P}(\mathbf{x})$. It is represented as

$$
\underline{\mathbf{P}(t) \text { for all t }}
$$

11/23/2022
$\therefore(\forall \mathbf{x}) \mathbf{P}(\mathbf{X})_{\text {CSE }}^{\text {Sreenivasarao-DM-UNIT-II-II }}$

Fundamental Rule ES: (Existential Specification)

If $(\exists x) \mathbf{P}(\mathbf{x})$ is assumed to be true, then there is an element \mathbf{t} in the universe such that $P(t)$ is true. This may be represented as
$(\exists \mathrm{x}) \mathbf{P}(\mathrm{x})$
$\therefore \mathbf{P}(\mathbf{t})$ for some \mathbf{t}
Fundamental Rule EG: (Existential Generalization)
If $\mathbf{P}(\mathbf{t})$ is true for some element t in the universe then $(\exists \mathbf{x}) \mathbf{P}(\mathbf{x})$ is true. This may be represented as
$P(t)$ for some t
$\therefore(\exists \mathbf{x}) \mathbf{P}(\mathbf{x})$

Example 1: verify the validity of the following argument.
Every living thing is a plant or an animal.
John's gold fish is alive and it is not a plant.
All animals have hearts.
Therefore John's gold fish has a heart.
Let the universe consist of all living things.
$\mathbf{P}(\mathbf{x}): \mathbf{x}$ is Plant.
$A(x)$: x is an animal
$\mathbf{H}(\mathbf{x})$: x has a Heart.
G: John's gold fish
Then the inference pattern is

$$
\begin{aligned}
&(\forall \mathbf{x})[\mathbf{P}(\mathbf{x})\mathbf{V} \mathbf{A}(\mathbf{x})] \\
& \sim \mathbf{P}(\mathbf{g}) \\
&(\forall \mathbf{x})[\mathbf{A}(\mathbf{x}) \rightarrow \mathbf{H}(\mathbf{x})]
\end{aligned}
$$

$[1]$	(1)	$(\forall \mathbf{x})[\mathbf{P}(\mathbf{x}) \vee \mathbf{A}(\mathbf{x})]$	Rule \mathbf{P}
$[2]$	(2)	$\sim \mathbf{P}(\mathbf{g})$	Rule \mathbf{P}
$[1]$	(3)	$\mathbf{P}(\mathbf{g}) \mathbf{V} \mathbf{A}(\mathrm{g})$	Rule US, from (1)
$[1,2]$	(4)	$\mathbf{A}(\mathrm{g})$	Rule T, from (2) and (3)
$[5]$	(5)	$(\forall \mathbf{x})[\mathbf{A}(\mathbf{x}) \rightarrow \mathbf{H}(\mathbf{x})]$	Rule \mathbf{P}
$[5]$	(6)	$\mathbf{A}(\mathbf{g}) \rightarrow \mathbf{H}(\mathrm{g})$	Rule US
$[1,2,5]$	(7)	$\mathbf{H}(\mathbf{g})$	Rule T, from (4) and (6)

Thus the conclusion is valid.

Example 2: verify the validity of the following argument.
Lions are dangerous animals.
There are lions.
\therefore There are dangerous animals.
$L(x): x$ is Lion.
$A(x): x$ is an animal
Then the inference pattern is

$$
\begin{array}{r}
(\forall \mathbf{x})[\mathbf{L}(\mathbf{x}) \rightarrow \mathbf{A}(\mathbf{x})] \\
(\exists \mathbf{x}) \mathbf{L}(\mathbf{x}) \\
\therefore-\cdots(\exists \mathbf{x}) \mathbf{A}(\mathbf{x})
\end{array}
$$

Example 3: verify the validity of the following argument.
All men are mortal.
Socrates is a man .
\therefore socrates is a mortal.
$H(x): x$ is man.
$\mathbf{M}(\mathbf{x}): \mathrm{x}$ is a mortal.
S: Socrates
Then the inference pattern is

$$
(\forall \mathbf{x})[\mathbf{H}(\mathbf{x}) \rightarrow \mathbf{M}(\mathbf{x})] \wedge \mathbf{H}(\mathbf{s}) \Rightarrow \mathbf{M}(\mathbf{s})
$$

$[1]$	(1)	$(\forall x)[H(x) \rightarrow M(x)]$	Rule \mathbf{P}
$[1]$	(2)	$H(s) \rightarrow M(s)$	Rule US, From (1)
$[3]$	(3)	$H(s)$	Rule P
$[1,3]$	(4)	$M(s)$	Rule T, from (2) and (3) \mathbf{I}_{11}

Thus the inference is valid.

4: verify the validity of the following argument All men are fallible.

All kings are men.
\therefore All kings are fallible.
Let $M(x)$: " x is a man"
$K(x)$: " x is a king"
$F(x)$: " x is fallible"
The above argument is symbolized as

$$
\begin{aligned}
& \forall \mathbf{x},[\mathbf{M}(\mathbf{x}) \rightarrow \mathbf{F}(\mathbf{x})] \\
& \forall \mathbf{x},[\mathbf{K}(\mathbf{x}) \rightarrow \mathbf{M}(\mathbf{x})] \\
& \therefore \forall \mathbf{x},[\mathbf{K}(\mathbf{x}) \rightarrow \mathbf{F}(\mathbf{x})]
\end{aligned}
$$

```
Proof:
```

$[1]$	(1)	$\forall \mathbf{x},[\mathbf{K}(\mathbf{x}) \rightarrow \mathbf{M}(\mathbf{x})]$	Rule \mathbf{P}
$[1]$	(2)	$\mathbf{K}(\mathbf{c}) \rightarrow \mathbf{M}(\mathrm{c})$	Rule US, from (1)
$[3]$	(3)	$\forall \mathbf{x},[\mathbf{M}(\mathbf{x}) \rightarrow \mathbf{F}(\mathbf{x})]$	Rule \mathbf{P}
$[3]$	(4)	$\mathbf{M}(\mathbf{c}) \rightarrow \mathbf{F}(\mathbf{c})$	Rule US, from (3)
$[1,3]$	(5)	$\mathbf{K}(\mathbf{c}) \rightarrow \mathbf{F}(\mathbf{c})$	Rule T, from (2) \& (4) and chain rule
$[1,3]$	(6)	$\forall \mathbf{x},[\mathbf{K}(\mathbf{x}) \rightarrow \mathbf{F}(\mathbf{x})]$	Rule UG, from (5)

Thus the inference is valid.

5: Symbolize the following argument and check for its validity
All integers are rational numbers.
Some integers are powers of 3 .
\therefore Some rational numbers are powers of 3 .
6: Show that from
a. $(\exists \mathrm{x})(\mathrm{F}(\mathbf{x}) \wedge \mathrm{S}(\mathbf{x})) \rightarrow(\forall \mathbf{y})(\mathbf{M}(\mathbf{y}) \rightarrow \mathbf{W}(\mathbf{y}))$
b. $(\exists \mathbf{y})(\mathbf{M}(\mathbf{y}) \wedge \sim \mathbf{W}(\mathbf{y}))$

The conclusion $(\forall \mathbf{x})(\mathbf{F}(\mathbf{x}) \rightarrow \sim \mathbf{S}(\mathbf{x}))$ follows.
7: Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \vee \mathbf{Q}(\mathbf{x})) \Rightarrow(\forall \mathbf{x}) \mathbf{P}(\mathbf{x}) \mathbf{V}(\exists \mathbf{x}) \mathbf{Q}(\mathbf{x}))$
8. Is the following conclusion validity derivable from the premises given?

$$
\text { If }(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x})) ;(\exists \mathbf{y}) \mathbf{P}(\mathbf{y}), \text { then }(\exists \mathbf{z}) \mathbf{Q}(\mathbf{z})
$$

9. Using CP or otherwise obtain the following implication.

$$
(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x})),(\forall \mathbf{x})(\mathbf{R}(\mathbf{x}) \rightarrow \sim \mathbf{Q}(\mathbf{x})) \Rightarrow(\forall \mathbf{x})(\mathbf{R}(\mathbf{x}) \rightarrow \sim \mathbf{P}(\mathbf{x}))
$$

10. Show that $(\exists x)(P(x) \wedge Q(x)) \rightarrow((\exists x) P(x) \wedge(\exists x) Q(x))$ is logically valid statement.
11. Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x})) \rightarrow((\forall \mathbf{x}) \mathbf{P}(\mathbf{x}) \rightarrow(\forall \mathbf{x}) \mathbf{Q}(\mathbf{x}))$ is logically valid statement.

12. Show that $\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{y})) \leftrightarrow(\sim \mathbf{P}(\mathbf{x}) \vee \mathbf{Q}(\mathbf{y}))$ is logically valid statement.
13. Show that $P(x) \wedge Q(y)) \rightarrow(\sim P(x) \rightarrow Q(y))$ is logically valid statement.
14. Show that $R(x) \wedge S(x)) \rightarrow R(x)$ is logically valid statement.
15. Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \vee \mathbf{Q}(\mathbf{x})),(\forall \mathbf{x}) \sim \mathbf{P}(\mathbf{x}) \Rightarrow(\forall \mathbf{x}) \mathbf{Q}(\mathbf{x})$ is logically valid statement.
16. Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x})) \wedge(\forall \mathbf{x})(\mathbf{Q}(\mathbf{x}) \rightarrow \mathbf{R}(\mathbf{x})) \Rightarrow(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{R}(\mathbf{x}))$ is logically valid statement.
17. Show that $P \rightarrow((\exists x) Q(x)) \Rightarrow(\exists x)(P(x) \rightarrow Q(x))$ is logically valid statement.

2.2.5. Formulas involving more than one quantifier :

Consider the statement $\mathbf{P}(\mathbf{x}, \mathrm{y}): \mathrm{x}$ likes y .
$((\exists x)(\mathbf{P}(x, y))$: there is an x suchthat, x likes y.
$(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: every one liked \mathbf{y}.
$(\exists y)(\exists x)(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: there is someone whom some one likes.
$(\exists \mathbf{y})(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathrm{y}))$: there is someone whom every body likes.
$(\forall \mathbf{y})(\exists \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Everybody is liked by some one.
$(\forall \mathbf{y})(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Everybody is liked by every one.
$(\exists \mathbf{x})(\exists \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: someone likes some body.
$(\exists x)(\forall y)(P(x, y)):$ some one likes every one.
$(\forall \mathbf{x})(\exists \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Every one likes some one.
$(\forall \mathbf{x})(\forall \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Every one likes everybody.

$$
\begin{aligned}
& (\exists \mathbf{y})(\exists \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))<=>(\exists \mathbf{x})(\exists \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y})) \\
& (\forall \mathbf{y})(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))<=>(\forall \mathbf{x})(\forall \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y}))
\end{aligned}
$$

Example 1: Symbolize "Every one who likes fun will enjoy each of these plays"

Sol: Let	$L(x):$ 'x likes fun'
	$\mathbf{P}(\mathbf{y}):$ ' y is play'
	$E(x, y): x$ will enjoy y

the statement can be represented as "for each x, if x likes fun and for each y, if y is a play, then x enjoys $y "$. Symbolically $(\forall x)(\forall y)[L(x) \wedge P(y)] \rightarrow E(x, y)$

2: write the Symbolic form and negate the statement "Everyone who is healthy can do all kinds of work".

3: write the Symbolic form and negate the statement "Some people are not admired by everyone".

4: write the Symbolic form and negate the statement "Everyone should help his neighbors, or his neighbors will not help him".

Example 5: Verify the validity of the following.
If one person is more successful than another, then he has worked harder to deserve success.

Naveen has not worked harder than Amul.
Therefore, Naveen is not more successful then Amul.
Sol: Let $S(x, y)$: ' x is more successful than y '

```
W(x,y): 'x has worked harder than y to deserve the success'
    n: 'Naveen'
    a : 'Amul'
```

Then the inference pattern is

$$
\begin{aligned}
(\forall \mathbf{x})(\forall \mathbf{y})[\mathbf{S}(\mathbf{x}, \mathbf{y}) & \rightarrow \mathbf{W}(\mathbf{x}, \mathbf{y})] \\
& \sim \mathbf{W}(\mathbf{n}, \mathbf{a})
\end{aligned}
$$

$$
\sim S(\mathbf{n}, \mathbf{a})
$$

[1]	(1)	$\sim W(n, a)$	Rule P
[2]	(2)	$(\forall \mathbf{x})(\forall \mathbf{y})[\mathbf{S}(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{W}(\mathbf{x}, \mathbf{y})]$	Rule P
[2]	(3)	$(\forall \mathbf{y})[\mathbf{S}(\mathbf{n}, \mathrm{y}) \rightarrow \mathbf{W}(\mathrm{n}, \mathrm{y})]$	Rule US, from (2)
[2]	(4)	$\mathbf{S}(\mathrm{n}, \mathrm{a}) \rightarrow \mathbf{W}(\mathrm{n}, \mathrm{a})$	Rule US, from (3)
[1,2]	(5)	$\sim \mathbf{S}(\mathbf{n}, \mathbf{a})$	Rule T, from (1) \& (4)

6: Show that $(\forall \mathbf{x})(\forall y)[P(x, y)] \rightarrow(\exists x)(\forall y) P(x, y)$ logically valid statement.
7: Show that $(\forall x)(\exists y)[P(x, y)] \rightarrow(\exists x)(\exists y) P(x, y)$ logically valid statement.
8: Show that $(\forall \mathbf{x})[\mathbf{H}(\mathbf{x}) \rightarrow \mathbf{A}(\mathbf{x})] \rightarrow(\forall \mathbf{x})[(\exists \mathrm{y})(\mathbf{H}(\mathbf{y}) \wedge \mathbf{N}(\mathbf{x}, \mathbf{y})) \rightarrow(\exists \mathbf{y})(\mathbf{A}(\mathbf{y}) \wedge \mathbf{N}(\mathbf{x}, \mathbf{y}))]$ logically valid statement.

9: Show that $\sim \mathbf{P}(\mathbf{a}, \mathrm{b})$ follows logically from $(\forall \mathbf{x})(\forall \mathbf{y})[\mathbf{P}(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{W}(\mathbf{x}, \mathbf{y}))$ and $\sim \mathbf{W}(\mathbf{a}, \mathrm{b})$

Discrete Mathematics (DM)- ()Unit

2 : First order logic

2.1.Predicates

2.2.Quantifiers
2.3.Free and Bound Variables
2.4. Inference theory or Rules of Inference

2.1. Predicate Calculus

The propositional logic is not powerful enough to represent all types of statements that are used in Computer Science and Mathematics, or to express certain types of relationship between propositions such as equivalence.

For example, the statement " X is greater than 1 ", where X is a variable, is not a proposition because you can not tell whether it is true or false unless you know the value of \mathbf{X}.

Thus the propositional logic can not deal with such sentences. However, such statements appear quite often in Mathematics and we want to do inferenceing on those statements. $>$ Not all birds fly" is equivalent to "Some birds don't fly". >'Not all integers are even" is equivalent to 'Some integers are not even'. >"Not all cars are expensive" is equivalent to "'Some cars are not expensive". Each of those propositions is treated independently of the others in propositional logic.

Example: if Prepresents "Not ail birds fily" and
Q represents 'Some integers are not even',
then there is no mechanism in propositional logic to find out that P is equivalent to Q.
$>$ Thus we need more powerful logic to deal with these and other problems. The predicate logic is one of such logic and it addresses these issues among others.

2.1. Predicates:

A predicate is a verb phrase template that describes a property of objects, or a relationship among objects represented by the variables.

The logic based upon the analysis of predicates in any statement is called Predicate logic.
Symbolize a predicate by a capital letter and names of individuals or objects in general by small letters.

Example 1: The statement ' x is a student' has two parts.
Part 1: The variable x is the subject of the statement.
Part 2: The predicate ' is a student' refers to a property that the subject of the statement can have.

We can denote the statement ' x is a student' by $S(x)$ where S denotes the predicate and x is a variable.

In general any statement of the type ' \mathbf{p} is \mathbf{Q} ' where \mathbf{Q} is the predicate and p is the subject can be denoted by $\mathbf{Q}(\mathbf{p})$

Example 2: Amulya is a Student and This painting is Blue.

$$
S(\mathbf{a}) \wedge \mathbf{B}(\mathbf{p}) .
$$

A predicate requiring $\mathbf{m}(\mathbf{m}>\mathbf{0})$ names or objects is called an m-place predicate. Example 3: Amulya is a Student
'is a student' is a 1-place predicate because it is related to one object(Amulya).

Example 4: Naveen is taller than Amul.

The predicate 'is taller than' is a 2-place predicate.
The representation is $\mathbf{T}(\mathbf{n}, \mathrm{a})$
When $\mathbf{m}=\mathbf{0}$, then we shall call a statement 0 -place predicate because no names are associated with a statement.

A Simple statement function of one variable is defined to be an expression consisting of a predicate symbol and an individual variable.

We can form 'Compound statement functions by combining one or more simple statement functions and the logical connectives.
$\mathbf{M}(x) \mathbf{V N}(x), \mathbf{M}(x) \wedge \mathbf{N}(x), \mathbf{M}(x) \rightarrow \mathbf{N}(x), \sim \mathbf{M}(x)$ and $\mathbf{M}(x) \leftrightarrow N(x)$.

Some restrictions can be introduced by limiting the class of objects under considerations. These limitation means that the variable which are mentioned stand for only those objects which are members of particular set or class. Such a restricted class is called the universe of discourse or the domain of individuals or simply the universe.

Example 5: consider the statement
"Given any positive integer, there is greater positive integer"
in this case the universe of discourse is the set of positive integers.

2.2. Quantifiers

The statements involve words that indicate quantity such as 'all', 'some', 'none', or 'one'. These words indicates quantity and they are called Quantifiers.

Sentence
Some men are tall.
All birds have wings.
No air balloon is perfectly round. All air balloons fail to be perfectly round.
There is a real number less than 11. Atleast one real number is less than 11.
There are two types of quantifiers.

1. Universal
2. Existential

Universal quantifier: The quantifier "all" is called as the Universal quantifier, Denoted as $\forall \mathbf{x}$.

The symbol $\forall \mathrm{x}$ Represents each of the following phrases have same meaning.
\checkmark For all x
\checkmark For every x
\checkmark For each x
\checkmark Every thing x is such that
\checkmark Each thing x is such that
Existential quantifier: The quantifier "some" is the Existential quantifier. Denoted as $\exists \mathrm{x}$.
The symbol $\exists \mathrm{x}$ Represents each of the following phrases have same meaning
\checkmark For some x
\checkmark Some x is such that
\checkmark There exists an x such that
\checkmark There is an x such that
\checkmark There is at least one x such that

Example 1: Some thing is Good

Solution : "There is atleast one x such that x is good"
The Symbolic form: $(\exists \mathbf{x}) \mathbf{G}(\mathbf{x})$

Example 2: Every thing is Good

Solution: "For all x, x is good"
The Symbolic form: $(\forall \mathbf{x}) \mathbf{G}(\mathbf{x})$

Example 3: Nothing is Good

Solution : "For all \mathbf{x}, \mathbf{x} is not good"
The Symbolic form: $(\forall \mathbf{x}) \sim \mathbf{G}(\mathbf{x})$

Example 4: Something is not Good

Solution: "There is atleast one x such that x is good"
The Symbolic form: $(\exists \mathbf{x}) \sim \mathbf{G}(\mathbf{x})$

Equivalent Formulas:

\checkmark "All true" means the same as "None false".
\checkmark "All false" means the same as "None true".
\checkmark "Not all true" means the same as "Atleast one false".
\checkmark "Not all false" means the same as "Atleast one true".

$$
\begin{array}{lll}
\checkmark(\forall \mathbf{x}) \mathbf{F}(\mathbf{x}) & \Leftrightarrow & \sim(\exists \mathbf{x}) \sim \mathbf{F}(\mathbf{x}) \\
\checkmark(\forall \mathbf{x}) \sim \mathbf{F}(\mathbf{x}) & \Leftrightarrow & \sim(\exists \mathbf{x}) \mathbf{F}(\mathbf{x}) \\
\checkmark \sim[\forall \mathbf{x}, \mathbf{F}(\mathbf{x})] & \Leftrightarrow & (\exists \mathbf{x}) \sim \mathbf{F}(\mathbf{x}) \\
\checkmark \sim[(\forall \mathbf{x}) \sim \mathbf{F}(\mathbf{x})] & \Leftrightarrow & (\exists \mathbf{x}) \mathbf{F}(\mathbf{x})
\end{array}
$$

The symbol \exists ! x is read there is a unique x such that \ldots.. or There is one and only one x such that ...

Ex: There is one and only one even prime.
$\exists!x$, [x is an even prime]
$\exists!\mathbf{x}, \mathbf{P}(\mathbf{x})$ where $\mathbf{P}(\mathbf{x}) \equiv \mathrm{x}$ is an even prime integer.
To form the negation of a statement involving one quantifier, change the quantifier form universal to existential, or from existential to universal, and negate the statement, which it quantifies.

Statement	Its Negation
$\forall \mathbf{x} \mathbf{P}(\mathbf{x})$	$[\exists \mathbf{x} \sim \mathbf{P}(\mathbf{x})]$
$\exists \mathbf{x} \mathbf{P}(\mathbf{x})$	$[\forall \mathbf{x}\{\sim \mathbf{P}(\mathbf{x})\}]$

Example 1: All monkeys have tails
Solution : "For all x , if x is a monkey, then x has tail"
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \mathbf{T}(\mathbf{x})]$
Example 2: No monkey has a tail.
Solution : "For all x , if x is a monkey, then x has no tail"
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \sim \mathbf{T}(\mathbf{x})]$

Example 3: Some monkeys have tails
Solution : "There is an x such that, x is a monkey and x has tail"
The Symbolic form: $(\exists \mathbf{x})[\mathbf{M}(\mathbf{x}) \wedge \mathbf{T}(\mathbf{x})]$
Example 4: Some monkeys have no tails
Solution : "There is an x such that, x is a monkey and x has no tail"

Example 1: All men are good. \square
Solution : "For all x , if x is a man, then x is Good."
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \mathbf{G}(\mathbf{x})]$
Example 2: No men are good.
Solution : "For all x , if x is a man, then x is not Good"
The Symbolic form: $(\forall \mathbf{x})[\mathbf{M}(\mathbf{x}) \rightarrow \sim \mathbf{G}(\mathbf{x})]$
Example 3: Some men are good.
Solution : "There is an x such that, x is a man and x is Good."
The Symbolic form: $(\exists \mathbf{x})[\mathbf{M}(\mathbf{x}) \wedge \mathbf{G}(\mathbf{x})]$
Example 4: Some men are not good.
Solution : "There is an x such that, x is a man and x is not tail"
The ${ }^{11 / 23} / 20183$ lic form: $(\exists \mathbf{x})\left[M^{\mathrm{Dr}}\right.$ E Tarake

Write the following sentences is the closed form or Symbolic form.

1. Some people who trust others one rewarded.
2. If any one is good then john is good.
3. He is ambitious or no one is ambitious.
4. Some one is teasing
5. It is not true that all roads lead to rome.

1: Some people who truist others one rewarded.
Solution : "There is one x such that, x is a person, x trusts others and x is rewarded."
The Symbolic form: $(\exists \mathbf{x})[\mathbf{P}(\mathbf{x}) \wedge \mathbf{T}(\mathbf{x}) \wedge \mathbf{R}(\mathbf{x})]$
2: If any one is good then john is good.

Solution : "If there is one x such that x is a person and x is good then john is good."
The Symbolic form: $(\exists \mathbf{x})[\mathbf{P}(\mathbf{x}) \wedge \mathbf{G}(\mathbf{x})] \rightarrow \mathbf{G}(\mathbf{J o h n})$
3: He is ambitious or no one is ambitious.
Solution : He represents a particular person. Let that person be y. so "y is ambitious or for all x , if x is person then x is not ambitious."

The Symbolic form: $\mathbf{A}(\mathbf{y}) \mathbf{V}((\forall \mathbf{x})[\mathbf{P}(\mathbf{x}) \hookrightarrow \sim \mathbf{A}(\mathbf{x})]$

4: Some one is teasing
Solution : "There is one x such that, x is a person and x is teasing" The Symbolic form: $(\exists \mathbf{x})[\mathbf{P}(\mathbf{x}) \wedge \mathbf{Q}(\mathbf{x})]$

5: It is not true that all roads lead to rome.
Solution : The statement can be written as

$$
\begin{aligned}
& \sim(\forall \mathbf{x})[\mathbf{S}(\mathbf{x}) \rightarrow \mathrm{L}(\mathbf{x})] \\
& \\
& (\exists \mathrm{x})[\mathbf{S}(\mathbf{x}) \wedge \sim \mathrm{L}(\mathbf{x})]
\end{aligned}
$$

Translate each of the following statements intosymbols, using quantifiers, variables, and predicate symbols.
1.All birds can fly.
2.Not all birds can fly.
3.All babies are illogical.
4.Some babies are illogical.
5.If x is a man, then x is a giant.
6.Some men are giants.
7.Some men are not giants.
8.All men are giants.
9.No men are giants.
10.There is a student who likes mathematics but not history.
11. x is an odd integer and x is prime.
12. For all integers x, x is odd and x is prime.
13. For each integer x, x is
x is prime.
14. There is an integer x such that x is odd and is prime
15. Not every actor is talented who is famous.
16. Some nos. are rational.
17. Some nos. are not rational.
18. Not all nos. are rational.
19. Not every graph is planar.
20. If some students are lazy, then all students are lazy.
21. x is rational implies that x is real.
22. Not all cars have Carburetors.
23. Some people are either religious or pious.
24. No dogs are intelligent.
25. All babies are illogical.
26. Every no. either is negative or has a square root.
27. Some numbers are not real.
28. Every connected and circuit free graph is a tree.
29. Not every graph is connected.

Statement formula in Predicate Calculus

$\mathbf{P}\left(\mathbf{x}_{1}, x_{2}, \ldots \ldots x_{n}\right)$ denotes an n-place predicate formula in which the letter \mathbf{P} is an n-place predicate and $x_{1}, x_{2}, \ldots . . x_{n}$ are objects or individual variables.

In general $P\left(x_{1}, x_{2}, \ldots . . x_{n}\right)$ will be called an atomic formula of predicate calculus.
Examples are $\mathbf{R}, \mathbf{Q}(\mathbf{x}), \mathbf{A}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\mathbf{A}(\mathbf{x}, \mathbf{y})$
A wff of predicate calculus formula is obtained by using the following rules.

1. An atomic formula is a wff.
2. If A is a formula, then $\sim A$ also a wff.
3. If A and B are wffs then $A \vee B, A \wedge B, A \rightarrow B$ and $A \leftrightarrow B$ are also wffs.
4. If A is wff x is any variable, then $\forall x A(x)$ and $\exists x A(x)$ are wff.
5. Only those formulas obtained by using rules(1) to (4) are wffs.

Free and Bound Variables

Generally predicate formulas contain a part of the form $(\forall x) \mathbf{P}(x)$ or $(\exists x) \mathbf{P}(x)$, such a part is called an x-bound part of the formula.

Any variable appearing in an x-bound part of a formula is called a bound variable, otherwise it is called free variable.

The formula $P(x)$ immediately following either $(\forall x)$ or $(\exists x)$ is described as the scope of the quantifier.

Example: $(\forall \mathbf{x}) \mathbf{A}(\mathbf{x}, \mathbf{y})$
Here
the scope of $(\forall x)$ is $A(x, y)$
$A(x, y)$ is the scope of the quantifier
x is bounded occurrence.
y is free occurrence.

Valid Formula and Equivalences

Example 1: Show that $(\forall x) \mathbf{P}(\mathbf{x}) \rightarrow(\exists \mathrm{x}) \mathbf{P}(\mathrm{x})$ is a tautologically valid statement. Sol: $(\forall \mathbf{x}) \mathbf{P}(\mathbf{x})$ is true in particular universe then the universe has atleast one object t in it and $P(t)$ is a true statement for every t in the universe. In particular $\mathbf{P}(\mathbf{t})$ must be true. Thus $(\exists \mathrm{x}) \mathbf{P}(\mathbf{x})$ is true. Therefore $(\forall \mathbf{x}) \mathbf{P}(\mathbf{x}) \rightarrow(\exists \mathbf{x}$ $\mathbf{P}(\mathbf{x})$ is a tautologically valid statement

if Why can't we use implication for the existential quantifier?

Example: All Apples are Delicious

Let F be the domain of fruits and
$A(x)$:is an apple $\quad D(x)$:is delicious
$\forall x \in F(A(x) \rightarrow D(x))$ says "any fruit, if it is an apple, then it is delicious," or simply, "apples are delicious fruit".
$\forall x \in F(A(x) \wedge D(x))$ says "any fruit, is an apple and is delicious", or simply "all fruit are delicious apples."
Example: Some Apples are Delicious
$\exists x \in F(A(x) \wedge D(x))$ says "some fruits, is an apple and is delicious," or simply 'there is a delicious apple".
$\exists x \in F(A(x) \rightarrow D(x))$ says "there is some fruit, that if it were an apple then it would be delicious'".

Predicate calculus : theory of inference

The Generalization and Specification rules are
Quantified Propositions:
Fundamental rule US: (Universal Specification)
If a statement of a form $\forall x P(x)$ is assumed to be true, then the universal quantifier can be dropped to obtain $P(t)$ is true for an arbitrary object t in the universe. In symbols, he rule is,

$$
\begin{aligned}
& \frac{(\forall \mathbf{x}) \mathbf{P}(\mathbf{x})}{} \\
& \therefore \mathbf{P}(\mathbf{t}) \text { for all } \mathrm{t}
\end{aligned}
$$

Fundamental Rule UG: (Universal Generalisation)
If a statement $P(t)$ is true for all t of the universe, then the universal quantifier may be prefixed to obtain $(\forall \mathbf{x}) \mathbf{P}(\mathbf{x})$. It is represented as

$$
\underline{P(t)} \text { for all } t
$$

11/23/2022
$\therefore(\forall \mathbf{x}) \mathbf{P}(\mathbf{X})_{\text {CSE }}^{\text {Sreenivasarao-DM-UN E5 \& CS- }-2022-23}$

Fundamental Rule ES: (Existential Specification)

If $(\exists x) \mathbf{P}(\mathbf{x})$ is assumed to be true, then there is an element \mathbf{t} in the universe such that $\mathbf{P}(\mathrm{t})$ is true. This may be represented as
$(\exists \mathbf{x}) \mathbf{P}(\mathbf{x})$
$\therefore \mathbf{P}(\mathbf{t})$ for some \mathbf{t}
Fundamental Rule EG: (Existential Generalization)
If $\mathbf{P}(\mathbf{t})$ is true for some element t in the universe then $(\exists \mathrm{x}) \mathbf{P}(\mathbf{x})$ is true. This may be represented as
$P(t)$ for some t
$\therefore(\exists \mathbf{x}) \mathbf{P}(\mathbf{x})$

Example 1: verify the validity of the following argument.
Every living thing is a plant or an animal.
John's gold fish is alive and it is not a plant.
All animals have hearts.
Therefore John's gold fish has a heart.
Let the universe consist of all living things.
$\mathbf{P}(\mathbf{x}): \mathrm{x}$ is Plant.
$A(x): x$ is an animal
$\mathbf{H}(x)$: x has a Heart.
G: John's gold fish
Then the inference pattern is

$$
\begin{aligned}
(\forall \mathbf{x})[\mathbf{P}(\mathbf{x}) & \mathbf{V} \mathbf{A}(\mathbf{x})] \\
& \sim \mathbf{P}(\mathbf{g}) \\
(\forall \mathbf{x})[\mathbf{A}(\mathbf{x}) \rightarrow & \mathbf{H}(\mathbf{x})]
\end{aligned}
$$

Example 2: verify the validity of the following argument.
Lions are dangerous animals.
There are lions.
\therefore There are dangerous animals.
$L(x): x$ is Lion.
$A(x): x$ is an animal
Then the inference pattern is

$$
\begin{array}{r}
(\forall \mathbf{x})[\mathbf{L}(\mathbf{x}) \rightarrow \mathbf{A}(\mathbf{x})] \\
(\exists \mathbf{x}) \mathbf{L}(\mathbf{x}) \\
\therefore(\exists \mathbf{x}) \mathbf{A}(\mathbf{x})
\end{array}
$$

Example 3: verify the validity of the following argument.
All men are mortal.
Socrates is a man .
\therefore socrates is a mortal.
$H(x): x$ is man.
$\mathbf{M}(\mathbf{x}): \mathrm{x}$ is a mortal.
S: Socrates
Then the inference pattern is

$$
(\forall \mathbf{x})[\mathbf{H}(\mathbf{x}) \rightarrow \mathbf{M}(\mathbf{x})] \wedge \mathbf{H}(\mathbf{s}) \Rightarrow \mathbf{M}(\mathbf{s})
$$

[1] (1) $(\forall x)[\mathbf{H}(x) \rightarrow \mathbf{M}(x)]$ Rule P

$[1]$	(2)	$\mathbf{H}(\mathbf{s}) \rightarrow \mathbf{M}(\mathbf{s})$	Rule US, From (1)
$[3]$	(3)	$\mathbf{H}(\mathbf{s})$	Rule \mathbf{P}
$[1,3]$	(4)	$\mathbf{M}(\mathbf{s})$	Rule T, from (2) and (3) I_{11}

Thus the inference is valid.

4: verify the validity of the following argument All men are fallible.

All kings are men.
\therefore All kings are fallible.
Let $\mathrm{M}(\mathrm{x})$: " x is a man"
$K(x)$: " x is a king"
$F(x)$: " x is fallible"
The above argument is symbolized as

$$
\begin{gathered}
\forall \mathbf{x},[\mathbf{M}(\mathbf{x}) \rightarrow \mathbf{F}(\mathbf{x})] \\
\forall \mathbf{x},[\mathbf{K}(\mathbf{x}) \rightarrow \mathbf{M}(\mathbf{x})] \\
\therefore \forall \mathbf{x},[\mathbf{K}(\mathbf{x}) \rightarrow \mathbf{F}(\mathbf{x})]
\end{gathered}
$$

Thus the inference is valid.

5: Symbolize the following argument and check for its walidity / / www. wps. com
All integers are rational numbers.
Some integers are powers of 3 .
\therefore Some rational numbers are powers of 3 .
6: Show that from
a. $(\exists \mathrm{x})(\mathbf{F}(\mathrm{x}) \wedge \mathrm{S}(\mathrm{x})) \rightarrow(\forall \mathbf{y})(\mathbf{M}(\mathbf{y}) \rightarrow \mathbf{W}(\mathbf{y}))$
b. $(\exists \mathbf{y})(\mathbf{M}(\mathbf{y}) \wedge \sim \mathbf{W}(\mathbf{y}))$

The conclusion $(\forall \mathbf{x})(\mathbf{F}(\mathbf{x}) \rightarrow \sim \mathbf{S}(\mathbf{x})$) follows.
7: Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \vee \mathbf{Q}(\mathbf{x})) \Rightarrow(\forall \mathbf{x}) \mathbf{P}(\mathbf{x}) \mathbf{V}(\exists \mathbf{x}) \mathbf{Q}(\mathbf{x}))$
8. Is the following conclusion validity derivable from the premises given?

$$
\text { If }(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x})) ;(\exists \mathbf{y}) \mathbf{P}(\mathbf{y}), \text { then }(\exists \mathrm{z}) \mathbf{Q}(\mathbf{z})
$$

9. Using CP or otherwise obtain the following implication.

$$
(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \Rightarrow \mathbf{Q}(\mathbf{x})),(\forall \mathbf{x})(\mathbf{R}(\mathbf{x}) \rightarrow \sim \mathbf{Q}(\mathbf{x})) \Rightarrow(\forall \mathbf{x})(\mathbf{R}(\mathbf{x}) \rightarrow \sim \mathbb{P}(\mathbf{x}))
$$

10. Show that $(\exists x)(P(x) \wedge Q(x)) \rightarrow((\exists x) P(x) \wedge(\exists x) Q(x))$ is logically valid statement.
11. Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x})) \rightarrow((\forall \mathbf{x}) \mathbf{P}(\mathbf{x}) \rightarrow(\forall \mathbf{x}) \mathbf{Q}(\mathbf{x}))$ is logically valid statement.

12. Show that $P(x) \leftrightarrow Q(y)) \leftrightarrow(\mathbb{R} P(x) \cup Q(y))$ is logically valid statement.
13. Show that $P(x) \wedge Q(y)) \leftrightarrow(\sim P(x) \rightarrow Q(y))$ is logically valid statement.
14. Show that $R(x) \wedge S(x)) \rightarrow R(x)$ is logically valid statement.
15. Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \vee \mathbf{Q}(\mathbf{x})),(\forall \mathbf{x}) \sim \mathbf{P}(\mathbf{x}) \Rightarrow(\forall \mathbf{x}) \mathbf{Q}(\mathbf{x})$ is logically valid statement.
16. Show that $(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x})) \wedge(\forall \mathbf{x})(\mathbf{Q}(\mathbf{x}) \rightarrow \mathbf{R}(\mathbf{x})) \Rightarrow(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{R}(\mathbf{x}))$ is logically valid statement.
17. Show that $P \rightarrow((\exists x) Q(x)) \Rightarrow(\exists x)(P(x) \rightarrow Q(x))$ is logically valid statement.

2.2.5. Formulas involving more than one quantifier :

Consider the statement $P(x, y): x$ likes y.
$((\exists x)(P(x, y))$: there is an x suchthat, x likes y.
$(\forall x)(P(x, y))$: every one liked y.
$(\exists y)(\exists x)(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: there is someone whom some one likes.
$(\exists y)(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: there is someone whom every body likes.
$(\forall \mathbf{y})(\exists \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Everybody is liked by some one.
$(\forall \mathbf{y})(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Everybody is liked by every one.
$(\exists x)(\exists y)(\mathbf{P}(x, y))$: someone likes some body.
$(\exists x)(\forall y)(P(x, y)):$ some one likes every one.
$(\forall \mathbf{x})(\exists \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Every one likes some one.
$(\forall \mathbf{x})(\forall \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y}))$: Every one likes everybody.

$$
\begin{aligned}
& (\exists \mathbf{y})(\exists \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))<=>(\exists \mathbf{x})(\exists \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y})) \\
& (\forall \mathbf{y})(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}, \mathbf{y}))<=>(\forall \mathbf{x})(\forall \mathbf{y})(\mathbf{P}(\mathbf{x}, \mathbf{y}))
\end{aligned}
$$

Example 1: Symbolize "Every one who likes fun will enjoy leach of these plays"

$$
\begin{aligned}
& \text { Sol: Let } \quad \mathcal{L}(x) \text { : ' } x \text { likes fun' } \\
& P(y) \text { : ' } y \text { is play' } \\
& E(x, y) \text { : } x \text { will enjoy } y
\end{aligned}
$$

the statement can be represented as ${ }^{6}$ for each x, if x likes fun and for each y, if \mathbf{y} is a play, then x enjoys $y^{\prime \prime}$. Symbolically $(\forall x)(\forall y)[L(x) \wedge P(y)] \rightarrow E(x, y)$

2: write the Symbolic form and negate the statement "Everyone who is healthy can do all kinds of work".

3: write the Symbolic form and negate the statement "Some people are not admired by everyone".
4: write the Symbolic form and negate the statement "Everyone should help his neighbors, or his neighbors will not help him".

Example 5: Verify the validity of the following. PdF Edit or - ht Fps?:/www. wps. com
If one person is more successful than another, then he has worked harder to deserve success.

Naveen has not worked harder than Amul.
Therefore, Naveen is not more successful then Amul.

Sol: Let $S(x, y)$: ${ }^{\prime} \mathbf{x}$ is more successful than ${ }^{\prime}{ }^{\prime}$
$\mathbf{W}(x, y)$: ' x has worked harder than y to deserve the success'
n: 'Naveen'
a: 'Amul"
Then the inference pattern is

$$
\begin{aligned}
(\forall \mathbf{x})(\forall \mathbf{y})[\mathbf{S}(\mathbf{x}, \mathbf{y}) & \rightarrow \mathbf{W}(\mathbf{x}, \mathbf{y})] \\
& \sim \mathbf{W}(\mathbf{n}, \mathbf{a})
\end{aligned}
$$

$$
\sim S(\mathbf{n}, \mathbf{a})
$$

[1]	(1)	$\sim \mathbf{W}(\mathbf{n}, \mathbf{a})$		
[2]	(2)	$(\forall \mathbf{x})(\forall \mathbf{y})$	Rule P	
[2]	(3)	$(\forall \mathbf{y})[\mathbf{S}(\mathrm{n}, \mathrm{y}$	Rule U	
[2]	(4)	$\mathrm{S}(\mathrm{n}, \mathrm{a}) \rightarrow \mathrm{W}$	Rule U	
[1,2]	(5)	$\sim \mathbf{S}(\mathbf{n}, \mathbf{a}) \bigcirc$	Rule T,	
Thus the inference is valid.				

6: Show that $(\forall \mathbf{x})(\forall y)[P(x, y)] \rightarrow(\exists x)(\forall y) P(x, y)$ logically valid statement.
7: Show that $(\forall x)(\exists y)[P(x, y)] \rightarrow(\exists x)(\exists y) P(x, y)$ logically valid statement.
8: Show that $(\forall \mathbf{x})[\mathbf{H}(\mathbf{x}) \rightarrow \mathbf{A}(\mathbf{x})] \rightarrow(\forall \mathbf{x})[(\exists \mathrm{y})(\mathbf{H}(\mathbf{y}) \wedge \mathbf{N}(\mathbf{x}, \mathbf{y})) \rightarrow(\exists \mathbf{y})(\mathbf{A}(\mathrm{y}) \wedge \mathbf{N}(\mathrm{x}, \mathrm{y}))]$ logically valid statement.

9: Show that $\sim \mathbf{P}(\mathbf{a}, \mathrm{b})$ follows logically from $(\forall \mathbf{x})(\forall \mathbf{y})[\mathbf{P}(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{W}(\mathbf{x}, \mathbf{y}))$ and $\sim \mathbf{W}(\mathbf{a}, \mathrm{b})$

Discrete Mathematics (DM)- (8F303)

Unit 3 : First order logic

3.1. Relations

3.1.1. Properties of binary relations
3.1.2. Equivalence Relations
3.1.3. Transitive Closure
3.1.4. Compatibility Relations
3.1.5. Partial Ordering
3.1.6. Hasse Diagrams
3.1.7. Lattices \& its Properties

3.2: Algebraic Structures

3.2.1. Algebraic Systems Definition and examples
3.2.2: General Properties
3.2.3. Semigroups and Monoids
3.2.4. Groups
3.2.5. Subgroups
3.2.6. Homomorphisms
3.2.7. Isomorphisms

A familiar is two dimensional coordinate (\mathbf{x}, y)
Let A and B are two sets. The Cartesian product of A and B is defined as

$$
\mathbf{A X B}=\{(\mathbf{a}, \mathrm{b}) / \mathbf{a} \in \mathbf{A} \text { and } \mathbf{b} \in \mathbf{B}\}
$$

In generally, the Cartesian product of n sets $A_{1}, A_{2}, \ldots . . A_{n}$ is defined as
$\mathbf{A}_{1} X_{2} \mathbf{X A}_{3} \ldots . . X_{n}=\left\{\left(a_{1}, a_{2}, \ldots . a_{n}\right) / a_{i} \in A_{i} i=1\right.$ to $\left.n\right\}$
The expression $\left(a_{1}, a_{2}, \ldots \mathbf{a}_{\mathbf{n}}\right)$ is called "an ordered n-tuple".
Example: Let $A=\{0,1,2\}$ and $B=\{a, b\}$ are two sets. Find $A \times B$ and $B \times A$.
$A \times B=\{(\mathbf{0}, \mathbf{a}),(\mathbf{0}, \mathbf{b}),(\mathbf{1}, \mathbf{a}),(\mathbf{1}, \mathbf{b}),(\mathbf{2}, \mathbf{a}),(\mathbf{2}, \mathbf{b})\}$

$$
\mathbf{B} \times \mathbf{A}=\{(\mathbf{a}, \mathbf{0}),(\mathbf{b}, \mathbf{0}),(\mathbf{a}, \mathbf{1}),(\mathbf{b}, \mathbf{1}),(\mathbf{a}, \mathbf{2}),(\mathbf{b}, \mathbf{2})\}
$$

It is to be noted that $A \times B \neq B \times A$ if the sets A and b are different.
If A has m elements and B has n elements then $A \times B$ and $B \times A$ will have $m \times n$ elements.

Relation or Binary Relation:

Binary relations represent relationships between the elements of two sets.
Let A and B be two sets. A binary relation from A to B is subset of $A \times B$. A binary relation R from set A to set B is defined by: $R \subseteq A \times B$

If $(a, b) \in R$, we write $a R b$ (a is related to b by R)
If $(a, b) \notin R$, we write $a R: b$ (a is not related to b by R)
A relation is represented by a set of ordered pairs
If $A=\{a, b\}$ and $B=\{1,2,3\}$, then a relation R_{1} from A to B might be, for example, R_{1} $=\{(\mathbf{a}, 2),(\mathbf{a}, 3),(b, 2)\}$.

The first element in each ordered pair comes from set A, and the second element in each ordered pair comes from set B

Then $R=\{(0, a),(0, b),(1, a),(2, b)\}$ is a relation from A to B.
\checkmark Can we write 0Ra?
\checkmark Can we write $2 R b ?$
\checkmark Can we write 1Rb?

Functions as Relations

A function is a relation that has the restriction that each element of A can be related to exactly one element of \mathbf{B}.

Relations on a Set
Relations can also be from a set to itself.
A relation on the set A is a relation from set A to set A, i.e., $R \subseteq A \times A$
Let $A=\{1,2,3,4\}$ Which ordered pairs are in the relation $\mathrm{R}=\{(\mathbf{a}, \mathrm{b}) \mid$ a divides b\}?
$R=\{(1,1),(\mathbf{1}, 2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Which of these relations (on the set of integers) contain each of the pairs $(1,1),(1,2)$, $(2,1),(1,-1)$, and (2,2)?

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\} \\
& R_{2}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b, a=-b\} \\
& R_{4}=\{(a, b) \mid a=b\} \\
& R_{5}=\{(a, b) \mid a=b+1\} \\
& R_{6}=\{(a, b) \mid a+b \leq 3\}
\end{aligned}
$$

The pair $(1,1)$ is in R_{1}, R_{3}, R_{4} and R_{6}
The pair $(1,2)$ is in R_{1} and R_{6}
The pair $(2,1)$ is in R_{2}, R_{5} and R_{6}
The pair $(1,-1)$ is in R_{2}, R_{3} and R_{6}
The pair (2,2) is in R_{1}, R_{3} and R_{4}
How many relations are there on a set with n elements? $\mathbf{2 n}^{\text {n2 }}$
If Ahas u_{12} elements, how many elementsrareatherein $\mathcal{A} u \times 1 A$?
n^{2}

How many relations are there on set $S=\{a, b, c\}$?
There are $\mathbf{3}$ elements in set S, so $S \times S$ has $3^{2}=9$ elements.
Therefore, there are $2^{9}=512$ different relations on the set $S=\{a, b, c\}$.
What is the total number of relations for a set that are containing elements?

$$
|\mathcal{P}(S \times S)|=2^{|S|^{2}}
$$

A relation on a set, S, is a subset of $S \times S$.

The total number of such relations is the cardinality of the power set, $\mathcal{P}(S \times S)$, the set of all subsets of ordered pairs from S.

This grows exponentially with the size of the set. For example, a set $S=\{a, b, c\}$, containing only three elements, already has $2^{9}=512$ possible relations. Add a fourth element and you have $2^{16}=65536$ relations...

3.1.1. Properties of Relations

Let \mathbf{R} be a relation on set A is said to be
(i) Reflexive: if $x R x$ or $(x, x) \in R$ for every $x \in A$.

Determine the properties of the following relations on $\{1,2,3,4\}$ Which of these is reflexive?
$\mathbf{R}_{1}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, 2),(\mathbf{2}, 1),(2,2),(3,4),(4,1),(4,4)\}$
$\mathbf{R}_{2}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1})\}$
$\mathbf{R}_{3}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, 2),(\mathbf{1}, 4),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, 2),(\mathbf{3}, \mathbf{3}),(4,1),(4,4)\}$
$\mathbf{R}_{4}=\{(\mathbf{2}, 1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
$\mathbf{R}_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{6}=\{(\mathbf{3}, 4)\}$

The relations R_{3} and R_{5} are reflexive because they contain all pairs of the form (\mathbf{a}, \mathbf{a}); the other don't [they are all missing $(3,3)$].

(ii) Irreflexive: \mathbf{A} relation \mathbf{R} on a set \mathbf{A} is called irreflexive if and

 only if $\langle\mathbf{x}, \mathbf{x}\rangle \notin R$ for every element a of A.if $x / R x$ or $(x, x) \notin R$ for every $x \in A$.
Determine the properties of the following relations on $\{1,2,3,4\}$.
Which of these are Irreflexive?
$R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$
$\mathbf{R}_{\mathbf{2}}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, 2),(2,1)\}$
$\mathbf{R}_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
$R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
$R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{\mathbf{6}}=\{(3,4)\}$

The relations R_{4} and R_{6} are irreflexive. The other don't [they are all has $(1,1)$].

(iii) Symmetric: if $\mathbf{x R y} \Rightarrow \mathrm{yRx}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$

A relation is symmetric iff " x is related to y " implies that " y is related to x ".
Which of these are symmetric?
$\mathbf{R}_{1}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, 1),(\mathbf{2}, 2),(\mathbf{3}, \mathbf{4}),(4,1),(4,4)\}$
$\mathbf{R}_{2}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1})\}$
$\mathbf{R}_{3}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{1}, 4),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, 2),(\mathbf{3}, \mathbf{3}),(4,1),(4,4)\}$
$\mathbf{R}_{4}=\{(\mathbf{2}, \mathbf{1}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, 2),(4,1),(4,2),(4,3)\}$
$\mathbf{R}_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{6}=\{(\mathbf{3}, 4)\}$
The relations R_{2} and R_{3} are symmetric because in each case (y, x) belongs to the relation whenever (\mathbf{x}, y) does.

The other relations are not symmetric.

(iv) Antisymmetric:

A relation R on a set A is called antisymmetric if and only if for any a, and b in A, whenever $<a, b\rangle \in R$, and $\langle b, a\rangle \in R$, $a=b$ must hold. Equivalently, \mathbf{R} is antisymmetric if and only if whenever $\langle\mathrm{a}, \mathrm{b}\rangle \in \mathbf{R}$, and $\mathbf{a} \neq$ b, $\langle\mathbf{b}, \mathbf{a}\rangle \notin \mathbf{R}$. Thus in an antisymmetric relation no pair of elements are related to each other. if whenever $x R y$ and $y R x$, then $x=y$.

$$
\begin{aligned}
& \text { or } \\
& \text { If } x \neq y \text { and } x R y \Rightarrow y R x \text { or }(y, x) \notin R \text {, for all } x, y \in A \text {. }
\end{aligned}
$$

Note: Symmetric and antisymmetric are NOT exactly opposites.

Which of these is antisymmetric?
$\mathbf{R}_{1}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, 2),(3,4),(4,1),(4,4)\}$
$\mathbf{R}_{2}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1})\}$
$R_{3}=\{(\mathbf{1}, 1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
$\mathbf{R}_{4}=\{(\mathbf{2}, \mathbf{1}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, 2),(4,1),(4,2),(4,3)\}$
$\mathbf{R}_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{6}=\{(\mathbf{3}, 4)\}$
The relations R_{4}, R_{5} and \mathbf{R}_{6} are antisymmetric because there is no pair of elements a and b with $a \neq b$ such that both (a,b) and (b,a) belong to the relation. The other relations are not antisymmetric.
(v). Assymetric: if $x R y \Rightarrow y_{\mathbb{R}} x$ or $(y, x) \notin R$.

A relation R is symmetric iff, if \mathbf{x} is related by R to y, then y is related by R to x. For example, being a cousin of is a symmetric relation:
if John is a cousin of Bill, then it is a logical consequence that Bill is a cousin of John.

A relation R is asymmetric iff, if x is related by R to y, then y is not related by R to x .

For example, being the father of is an asymmetric relation:
if John is the father of Bill, then it is a logical consequence that Bill is not the father of John.

A relation R is non-symmetric iff it is neither symmetric nor asymmetric.
For example, loves is a non-symmetric relation:
if John loves Mary, then there is no logical consequence concerning Mary loving

Which of these is Assymetric?
$\mathbf{R}_{1}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, 2),(\mathbf{3}, 4),(4,1),(4,4)\}$
$\mathbf{R}_{2}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, 2),(\mathbf{2}, 1)\}$
$R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
$\mathbf{R}_{4}=\{(\mathbf{2}, \mathbf{1}),(\mathbf{3}, \mathbf{1}), \underline{(\mathbf{3}, 2)},(\mathbf{4}, \mathbf{1}),(\mathbf{4}, 2),(\mathbf{4}, \mathbf{3})\}$
$\mathbf{R}_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{6}=\{(\mathbf{3}, 4)\}$

The relations $\mathbf{R}_{4}, \mathbf{R}_{5}$ and \mathbf{R}_{6} are Assymetric.
The other relations aren't Assymetric.

(vi). Transitive: if $x R y$ and $y R z \Rightarrow x R z$ for all $x, y, z \in A$.

Which of these is transitive?
$\mathbf{R}_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$
$\mathbf{R}_{2}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1})\}$
$\mathbf{R}_{3}=\{(\mathbf{1}, 1),(\mathbf{1}, 2),(\mathbf{1}, 4),(\mathbf{2}, 1),(2,2),(3,3),(4,1),(4,4)\}$
$\mathbf{R}_{4}=\{(\mathbf{2}, 1),(\mathbf{3}, 1),(\mathbf{3}, 2),(4,1),(4,2),(4,3)\}$
$R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{6}=\{(\mathbf{3}, 4)\}$

The relations $\mathbf{R}_{4}, \mathbf{R}_{5}$ are transitive because if (\mathbf{x}, y) and (y, z) belong to the relation, then (\mathbf{x}, z) does also.

The other relations aren't transitive.

If $A=\{1,2,3,4\}$ then the following relations holds which properties?
$\mathbf{R}_{1}=\{(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{4})\}$
$\mathbf{R}_{2}=\{(\mathbf{1}, 1),(\mathbf{2}, 2),(3,3),(4,4),(1,3),(3,2)\}$
$\mathbf{R}_{\mathbf{3}}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{3}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, 4),(4,3)\}$
$\mathbf{R}_{4}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{3})\}$
$\mathbf{R}_{5}=\{(1,1),(2,2),(3,3),(4,4),(1,3),(3,1),(3,4),(4,3)\}$
$\mathbf{R}_{6}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, 2),(\mathbf{2}, 3),(\mathbf{3}, 2),(\mathbf{3}, \mathbf{3})\}$
$\mathbf{R}_{7}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{3}, \mathbf{3}),(\mathbf{4}, 4),(\mathbf{1}, \mathbf{3})\}$
R_{1} not reflexive, not symmetric not transitive
\mathbf{R}_{2} reflexive, but neither symmetric nor transitive
\mathbf{R}_{3} Symmetric but neither reflexive nor transitive
\mathbf{R}_{4} transitive neither reflexive nor symmetric
\mathbf{R}_{5} reflexive symmetric bot not transitive
\mathbf{R}_{6} symmetric, transitive but not reflexive
\mathbf{R}_{7} reflexidye, transitive but not symmiezrfrepu Sreenivasarao - DM - III UNIT -

Representing Relations

There are two methods

Relation Matrix:

If $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ are finite set containing m and n elements respectively and R is a relation from A to B, then we can represent relation \mathbf{R} by an $m \mathbf{X}$ matrix, called Relation Matrix, denoted by

$$
\begin{aligned}
& M_{R}=\left\{\mathbf{M}_{\mathrm{ij}}\right\} \text { where } \\
& \begin{array}{lll}
\mathbf{M}_{\mathrm{ij}} & =\mathbf{1} & \text { if }\left(\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{j}}\right) \in \mathbf{R} \\
=\mathbf{0} & \text { if }\left(\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{j}}\right) \notin \mathbf{R}
\end{array}
\end{aligned}
$$

The zero-one matrix representing the relation R has 1 as $i t s(i, j)$ entry when a_{i} is related to b_{j} and a 0 in this position if a_{i} is not related to b_{j}.

Example: Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ The relation R from A to B is given by $R=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{4}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{3}\right)\right\}$ Find the relation matrix for \mathbf{R}.

Example: Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ The relation R from A to B is given by $R=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{3}\right),\left(a_{3}\right.\right.$, $\left.b_{5}\right)$ \} Find the relation matrix for R.

Example: Let $A=\{a, b, c\}$ and $B=\{d, e\}$ The relation R from A to B is given by $\mathbf{R}=\{(\mathbf{a}, \mathbf{d}),(\mathbf{b}, \mathbf{e}),(\mathbf{c}, \mathbf{d})\}$ Find the relation matrix for \mathbf{R}.

$\left[\begin{array}{ll}1 & 0\end{array}\right]$ Note that A is represented by the rows and B by the columns $0 \quad 1$ in the matrix.
 $1 \quad 0 \quad$ Cell $_{\mathrm{ij}}$ in the matrix contains a 1 iff a_{i} is related to b_{j}.

Relation Matrices and Properties

Let \mathbf{R} be a binary relation on a set A and let M be the zero-one matrix for R.
R is reflexive if all t he elements on the main diagonal of M_{R} is $1\left(M_{i i}=1\right.$ for all $\left.i\right)$
R is symmetric iff if $M_{i j}=1$ whenever $M_{i j}=1$ for all $i \neq j M$ is a symmetric matrix, i.e., $M=M^{T}$
R is antisymmetric if $M_{i j}=1$ with $i \neq j$ then $M_{j i}=0$
Suppose that the relation R on a set is represented by the matrix M_{R}.

$$
M_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Is R reflexiye, symmetric, and / or antisynmietric ${ }^{2}$ arao - DM - III UNIT -

Example

$$
\begin{aligned}
& \left.\begin{array}{lll}
& 1 & 0
\end{array} \right\rvert\, \text { Is } R \text { reflexive? } \\
& M_{R}=\left\{\begin{array}{lll|l}
1 & 1 & 1 & \text { Is } R \text { symmetric? } \\
\text { Is } R \text { antisymmetric } ? ~
\end{array}\right. \\
& \left\lfloor\begin{array}{lll}
0 & 1 & 1
\end{array}\right\rfloor
\end{aligned}
$$

-All the diagonal elements $=1$, so R is reflexive.
-The lower left triangle of the matrix $=$ the upper right triangle, so R is symmetric.
-To be antisymmetric, it must be the case that no more than one element in a symmetric position on either side of the diagonal =1. But $M_{23}=M_{32}=1$. So R is not antisymmetric.

Using Digraphs

A relation can be represented pictorially by drawing digraph as follows.

1. A small circle is drawn for each element of A and marked with the corresponding element. These circles are called vertices.
2. An arrow is drawn from the vertex a_{i} to the vertex a_{j} iff $a_{i} \mathbf{R} a_{j}$. This is called an edge (directed)

An element of the form (a,a) is a relation corresponds to a directed edge from a to a. such edge is called a loop. This pictorial representation of \mathbf{R} is called a directed graph or digraph of R.

A directed graph (or digraph) consists of a set \mathbf{V} of vertices (or nodes) together with a set \mathbf{E} of ordered pairs of elements of \mathbf{V} called edges (or arcs).

The vertex a is called the initial vertex of the edge (a, b).
The vertex b is called the terminal vertex of the edge (a, b).

Let \mathbf{R} be a relation on set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{a}),(\mathrm{c}, \mathrm{b})\}$. Draw the digraph that represents \mathbf{R}

Let \mathbf{R} be a relation on set $\mathbf{V}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and $\mathbf{R}=\{(\mathbf{a}, \mathrm{b}),(\mathbf{a}, \mathrm{d}),(\mathbf{b}, \mathbf{b}),(\mathrm{b}, \mathrm{d}),(\mathbf{c}, \mathbf{a})$, $(\mathbf{c}, \mathbf{b}),(\mathrm{d}, \mathrm{b})\}$.Draw the digraph that represents \mathbf{R}

Note that edge (b, b) is represented using an arc from vertex b back to itself. This kind of an edge is called a loop.

What are the ordered pairs in the relation R represented by the directed graph to the below?

This digraph represents the relation $R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ on the set $\{1,2,3,4\}$.

What are the ordered pairs in the relation R represented by the directed graph to the below?

$$
\begin{aligned}
& R=\{(1,3),(\mathbf{1}, 4),(\mathbf{2}, 1),(2,2),(2,3),(3,1),(\mathbf{3}, \mathbf{3}),(4,1), \\
& (4,3)\}
\end{aligned}
$$

According to the digraph representing R :

- is $(4,3)$ an ordered pair in R ?
- is $(3,4)$ an ordered pair in R ?
\cdot is $(3,3)$ an ordered pair in R ?

$(4,3)$ is an ordered pair in R
$(3,4)$ is not an ordered pair in $R-$ no arrowhead pointing from 3 to 4
($3,3,3$) is is aprordered pair in R - loop back to itself ${ }_{23}$

Relation Digraphs and Properties

A relation digraph can be used to determine whether the relation has various properties

A relation is Reflexive iff there is a loop at every vertex in directed graph. So that every order pair of the form (\mathbf{x}, \mathbf{x}) occurs in the relation.

A relation is Symmetric iff for every edge between two distinct vertices in its digraph there is an edge in the opposite direction. So that (\mathbf{y}, x) in the relation whenever (\mathbf{x}, \mathbf{y}) in the relation.

A relation is Antisymmetric iff there are never two edges in opposite direction between two distinct vertices.

A relation is Transitive iff whenever there is an edge from a vertex \mathbf{x} to vertex y and an edge from vertex y to vertex z, there is an edge from x to z.

According to the digraph representing R :
\bullet is R Reflexive?
\cdot is \boldsymbol{R} Symmetric?

- is \boldsymbol{R} Antisymmetric?
\cdot is R Transitive?

- \mathbf{R} is Reflexive - there is a loop at every vertex
$\cdot \mathrm{R}$ is not Symmetric - there is an edge from a to b but not from b to a
- \mathbf{R} is not Antisymmetric - there are edges in both directions connecting b and c
$\cdot \mathrm{R}$ is not Transitive - there is an edge from a to b and an edge from b to c, but not from a to c

```
According to the digraph representing S:
\bullet is S Reflexive?
\bullet is S Symmetric?
\bullet is S Antisymmetric?
\bullet is S Transitive?
```

(b) Directed graph of S	-S is not Reflexive - there aren't loops at every vertex - S is Symmetric - for every edge from one distinct vertex to another, there is a matching edge in the opposite direction - S is not Antisymmetric - there are edges in both directions connecting a and b - S is not transitive - there is an edge from c to a and an edge from a to b, but not from c to b

Partitions (partition of a set A divides A into non-overlapping subsets)

Let A be a non empty set and $A_{1}, A_{2}, A_{3}, \cdots, A_{n}$ are the sub sets of A. A set denoted by $\boldsymbol{\pi}$ is called a Partition Set of \mathbf{A} if
i). If $\mathbf{A}_{\mathbf{i}} \cap \mathrm{A}_{\mathrm{j}}=\boldsymbol{\phi} \mathbf{i} \neq \mathbf{j}$
ii). $\mathbf{U} A_{i}=A . i=1$ to n.

Example 1: Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}\}$
Let the subsets are

$$
\begin{aligned}
& \mathbf{A}_{1}=\{\mathbf{a}, \mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& \mathbf{A}_{2}=\{\mathbf{f}, \mathrm{g}, \mathrm{~h}\} \\
& \mathbf{A}_{3}=\{\mathbf{i}, \mathbf{j}\} \\
& \mathbf{A}_{4}=\{\mathbf{a}, \mathrm{b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathbf{A}_{5}=\{\mathbf{c}\}
\end{aligned}
$$

Now $\pi_{1}=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right\}$ is a partition because

But $\pi_{2}=\left\{\mathbf{A}_{1}, \mathbf{A}_{4}, A_{5}\right\}$ is not a partition because $A_{1} \cap A_{4} \neq \phi$.
$\pi_{3}=\left\{A_{2}, A_{4}, A_{5}\right\}$ is not a partition because $A_{4} \cap A_{5} \neq \phi$ and $A_{2} \cup A_{4} \cup A_{5} \neq A$.
Example 2: $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$ and $\mathrm{S}_{1}=\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}, \mathrm{S}_{2}=\{\mathrm{b}\}, \mathrm{S}_{3}=\{\mathrm{c}, \mathrm{f}\}$, the $\mathbf{P}=$ $\left\{S_{1}, S_{2}, S_{3}\right\}$. Is P is a partition of set S ?.

Yes, it is Partition. Because $S_{1} \cap S_{2}=\phi, S_{1} \cap S_{3}=\phi, S_{2} \cap S_{3}=\phi$ also $S_{1} \cup S_{2} \cup S_{3}=S$.
Example 3: If $S=\{1,2,3,4,5,6\}$, then $A_{1}=\{1,3,4\}, A_{2}=\{2,5\}, A_{3}=\{6\}$ the $\mathbf{P}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right\}$. Is \mathbf{P} is a partition of set S ?.

Yes, it is Partition. Because $A_{1} \cap A_{2}=\phi, A_{1} \cap A_{3}=\phi, A_{2} \cap A_{3}=\phi$ also $A_{1} \cup A_{2} \cup A_{3}=S$.
Example 4: If $S=\{1,2,3,4,5,6\}$, then $A_{1}=\{1,3,4,5\}, A_{2}=\{2,5\}, A_{3}=\{6\}$ the $\mathbf{P}=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right\}$. Is \mathbf{P} is a partition of set S.

No, it is not Partition. Because $A_{1} \cap A_{2}=\{5\} \neq \phi$.

Example 5: If $S=\{1,2,3,4,5,6\}$, then $A_{1}=\{1,3\}, A_{2}=\{2,5\}, A_{3}=\{6\}$. The $P=$ $\left\{A_{1}, A_{2}, A_{3}\right\}$. Is P is a partition of set S ?.

No, it is not Partition. Because $A_{1} \cap A_{2}=\phi, A_{1} \cap A_{3}=\phi, A_{2} \cap A_{3}=\phi$ but $A_{1} \cup A_{2} \cup A_{3} \neq$ S.

Example 6: If $S=\{1,2,3,4,5,6\}$, then $A_{1}=\{1,3,4\}, A_{2}=\{2,5\}, A_{3}=\{6,7\}$. The $\mathbf{P}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right\}$. Is \mathbf{P} is a partition of set S ? .

No, it is not Partition. Because $A_{1} \cap A_{2}=\phi, A_{1} \cap A_{3}=\phi, A_{2} \cap A_{3}=\phi$ but $A_{1} \cup A_{2} \cup A_{3} \neq$ S. that is $\mathbf{7}$ not in \mathbf{S}.

3.1.2. Equivalence Relations

A relation \mathbf{R} on set \mathbf{X} is called an Equivalence Relation if it is: Reflexive, Symmetric, and Transitive

Two elements a and b that are related by an equivalence relation are said to be equivalent. We use the notation $\mathbf{a \sim b}$ to denote that a and b are equivalent elements with respect to a particular equivalence relation.

Definition: Let \mathbf{n} be a positive integer. For integers a and b we say that a is congruent to b modulo n, and write $a \equiv b(\bmod n)$, provided $\mathbf{a}-\mathrm{b}$ is divisible by n.

Example 1: Let $X=\{1,2,3,4,5,6,7\}$ and $R=\{(x, y) / x-y$ is divisible by 3$\}$ in X. Show that \mathbf{R} is an equivalence relation?

Sol :
XXX=\{(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(1,7),(2,1)(2,2),(2,3)(2,4)(2,5)(2,6)(2,7)(3,1)(3,2)(3,3)(3, $4)(3,5)(3,6)(3,7)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(4,7)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(5,7)(6,1)(6,2)$
$(6,3)(6,4)(6,5)(6,6)(6,7)(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(7,7)\}$
$\mathrm{R}=\{(\mathbf{1 , 1})(\mathbf{1 , 4})(\mathbf{1 , 7})(\mathbf{2}, \mathbf{2})(\mathbf{2}, \mathbf{5})(\mathbf{3}, \mathbf{3})(\mathbf{3 , 6})(\mathbf{4 , 1})(\mathbf{4 , 4})(\mathbf{4 , 7})(\mathbf{5 , 2})(\mathbf{5 , 5})(\mathbf{6 , 3})(\mathbf{6 , 6})(7,1)(7,3)(7,7)\}$
For any $\mathrm{a} \in \mathrm{X}, \mathrm{a}-\mathrm{a}$ is divisible by 3 . $\{(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(7,7)\}$
Hence aRa. There fore \mathbf{R} is Reflexive.
For any $\mathbf{a}, \mathbf{b} \in \mathbf{X}$, if $\mathbf{a}-\mathbf{b}$ is divisible by $\mathbf{3}$, then $\mathbf{b}-\mathbf{a}$ is also divisible by $\mathbf{3}$. that is $\mathbf{a R b} \Leftrightarrow$ $b R a$. There fore R is Symmetric.

For any $a, b, c \in X$, if $a R b$ and $b R c$ then both $a-b$ and $b-c$ are divisible by 3 . So that $a-$ $\mathbf{c}=(\mathbf{a}-\mathbf{b})+(\mathbf{b}-\mathbf{c})$ is also divisible by 3 . Hence $\mathbf{a R c}$. There fore \mathbf{R} is Transitive.

Therefore \mathbf{R} is an Equivalence Relation

Example 2: Let R be a relation on set A, where $A=\{1,2,3,4,5\}$ and $R=$ $\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1)\}$ Is R an equivalence relation?

Sol : Yes

We can solve this by drawing a relation digraph:
Reflexive - there must be a loop at every vertex.
Symmetric - for every edge between two distinct points there must be an edge in the opposite direction.

Transitive - if there is an edge from x to y and an edge from y to z, there must be an edge from x to z.

Example 3: Congruence modulo m. Let $\mathbf{R}=\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \equiv \mathbf{b}(\bmod m)\}$ be a relation on the set of integers and m be a positive integer >1. Is R an equivalence relation?

Example - Show that the relation
$R=\{(a, b) \mid a \equiv b(\bmod m)\}$ is an equivalence relation.
$a \equiv b(\bmod m)$ is the congruence modulo m function. It is true if and only if
m divides $a-b$.
Solution - To show that the relation is an equivalence relation we must prove that the relation is reflexive, symmetric and transitive.

1. Reflexive - For any element $a, a-a=0$ is divisible by \boldsymbol{m}.
$\therefore a \equiv a(\bmod m)$. So, congruence modulo m is reflexive.
2. Symmetric - For any two elements a and b, if $(a, b) \in R$ or $a \equiv b(\bmod m)$ i.e. $a-b$ is divisible by m, then $b-a$ is also divisible by m.
$\therefore b \equiv a(\bmod m)$. So Congruence Modulo m is symmetric.
3. Transitive - For any three elements a, b, and c if $(a, b),(b, c) \in R$ then-
$(a-b) \bmod m=0$
$(b-c) \bmod m=0$
Adding both equations,

$$
\begin{aligned}
& \Rightarrow(a-b) \bmod m+(b-c) \bmod m=0 \\
& \Rightarrow(a-b+b-c) \bmod m=0 \\
& \Rightarrow(a-c) m o d m=0
\end{aligned}
$$

$\therefore a \equiv c(\bmod m)$. so, R is transitive.
Since the relation R is reflexive, symmetric, and transitive, we conclude that R is an equivalence relation.

Example 4: R is the relation on the set of strings of English letters such that aRb iff $l(a)=l(b)$, where $l(x)$ is the length of the string x. Is R an equivalence relation?

Since $l(a)=l(a)$, then aRa for any string a.
So \mathbf{R} is Reflexive.
Suppose $a R b$, so that $l(a)=l(b)$. Then it is also true that $l(b)=l(a)$, which means that bRa.

Consequently, \mathbf{R} is Symmetric.
Suppose aRb and bRc. Then $\mathrm{l}(\mathrm{a})=\mathrm{l}(\mathrm{b})$ and $\mathrm{l}(\mathrm{b})=\mathrm{l}(\mathrm{c})$. Therefore, $\mathrm{l}(\mathrm{a})=\mathrm{l}(\mathrm{c})$ and so aRc.

Therefore, R is Transitive.
Therefore, \mathbf{R} is an Equivalence Relation.

Equivalence Class

Let R be a equivalence relation on set A.
The set of all elements that are related to an element a of A is called the equivalence class of a.

The equivalence class of a with respect to R is: $\quad[a]_{R}=\{s \mid(a, s) \in R\}$
When only one relation is under consideration, we will just write [a].
If $b \in[a]_{R}$, then b is called a representative of this equivalence class.
Let \mathbf{R} be the relation on the set of integers such that $a R b$ iff $a=b$ or $a=-b$. We can show that this is an equivalence relation.

The equivalence class of element a is $[a]=\{a,-a\}$
Examples:
$[7]=\{7,-7\}$
$[-5]=\{5,-5\}$
$[0]=\{0\}$

Important Note : All the equivalence classes of a Relation R on set A are either equal or disjoint and their union gives the set A.
$\bigcup[a]_{R}=A$
The equivalence classes are also called partitions since they are disjoint and their union gives the set on which the relation is defined

- Example : What are the equivalence classes of the relation Congruence Modulo m ?
- Solution : Let a and b be two numbers such that $a \equiv b(\bmod m)$. This means that the remainder obtained by dividing a and b with m is the same.
Possible values for the remainder- $0,1,2, \ldots, m-1$ Therefore, there are m equivalence classes -

$$
\begin{aligned}
& {[0]_{m},[1]_{m}, \ldots,[m-1]_{m}} \\
& {[0]_{m}=\{\ldots,-2 m,-m, 0, m, 2 m, \ldots,\}} \\
& {[1]_{m}=\{\ldots,-2 m+1,-m+1,1, m+1,2 m+1, \ldots,\}}
\end{aligned}
$$

$$
[m-1]_{m}=\{\ldots,-2 m-1,-m-1, m-1,2 m-1, \ldots,\}
$$

Consider the equivalence relation R on set A. What are the equivalence classes? $A=\{1,2,3,4,5\}$

$$
R=\{(1,1),(\mathbf{2}, 2),(3,3),(4,4),(5,5),(1,3),(3,1)\}
$$

Just look at the aRb relationships. Which elements are related to which?

$$
\begin{array}{ll}
{[1]=\{1,3\}} & {[2]=\{2\}} \\
{[3]=\{3,1\}} & {[4]=\{4\}} \\
{[5]=\{5\}} &
\end{array}
$$

A useful theorem about classes

Let \boldsymbol{R} be an equivalence relation on a set \boldsymbol{A}. These statements for \boldsymbol{a} and \boldsymbol{b} of \boldsymbol{A} are equivalent: $a \boldsymbol{R b}$

$$
\begin{aligned}
& {[a]=[b]} \\
& {[a] \cap[b] \neq \varnothing}
\end{aligned}
$$

More importantly: Equivalence classes are EITHER equal or disjoint

Constructing an Equivalence Relation from a Partition

Given set $S=\{1,2,3,4,5,6\}$ and a partition of $S, A_{1}=\{1,2,3\}, A_{2}=\{4,5\}, A_{3}$ $=\{6\}$ then we can find the ordered pairs that make up the equivalence relation R produced by that partition.
The subsets in the partition of $S, A_{1}=\{1,2,3\}, A_{2}=\{4,5\}, A_{3}=\{6\}$ are the equivalence classes of R. This means that the pair $(a, b) \in R$ iff a and b are in the same subset of the partition. Let's find the ordered pairs that are in R:

$$
\begin{aligned}
& A_{1}=\{1,2,3\} \rightarrow(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3) \\
& A_{2}=\{4,5\} \rightarrow(4,4),(4,5),(5,4),(5,5) \\
& A_{3}=\{6\} \rightarrow(6,6)
\end{aligned}
$$

So R is just the set consisting of all these ordered pairs:
$R=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,4),(4,5),(5,4),(5,5)$, (6,6) $\}$

Combining Relations operations on Relation:

Two relations from A to B can be combined in any way that two sets can be combined. Specifically, we can find the union, intersection, exclusive-or, and difference of the two relations.

Relations from A to B are subsets of $A \times B$.
For example, if $A=\{1,2,3\}$ and $B=\{a, b, c, d\}$, then $R=\{(1, a),(2, b),(3, c)\}$ and $S=\{(1, a),(1, b),(1, c),(1, d)\}$ then
i. Intersection: $\mathbf{R} \cap S=\{(\mathbf{a}, \mathbf{b}) \in \mathrm{AXB} /(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$ and $(\mathbf{a}, \mathbf{b}) \in \mathbf{S}\}$ is the intersection of the relation R and S. that is, $a(R \cap S) b \Leftrightarrow a R b \cap a S b$

$$
\mathbf{R} \cap \mathbf{S}=\{(\mathbf{1}, \mathbf{a})\}
$$

ii. Union: $\mathbf{R} \cup S=\{(\mathbf{a}, \mathbf{b}) \in A X B /(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$ or $(\mathbf{a}, \mathbf{b}) \in S\}$ is the union of the relation \mathbf{R} and S. that is, $a(R \cup S) b \Leftrightarrow a R b \cup a S b$

$$
R \cup S=\{(1, a),(1, b),(1, c),(1, d),(2, b),(3, c)\}
$$

iii. Difference: $\mathbf{R}-\mathrm{S}=\{(\mathbf{a}, \mathbf{b}) \in \mathrm{AXB} /(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$ and $(\mathbf{a}, \mathbf{b}) \notin S\}$ is the difference of the relation R and S. that is, $a(R-S) b \Leftrightarrow a R b \cup a$ not in $S b$

$$
\begin{aligned}
& R-S=\{(2, b),(3, c)\} \\
& S-R=\{(1, b),(1, c),(1, d)\}
\end{aligned}
$$

iv. Compliment: $\mathbf{R}^{\mathbf{c}}=\{(\mathbf{a}, \mathbf{b}) \in \mathrm{AXB} /(\mathbf{a}, \mathbf{b}) \notin \mathbf{R}$ is the compliment of the relation \mathbf{R}. that is, $\mathbf{a}\left(\mathbf{R}^{c}\right) \mathbf{b} \Leftrightarrow$ a not related $\mathbf{R b}$

$$
\begin{aligned}
& R^{c}=\{(1, b),(1, c),(1, d),(2, a),(2, c),(2, d),(3, a),(3, b),(3, d)\} \\
& S^{c}=\{(2, a),(2, b),(2, c),(2, d),(3, a),(3, b),(3, c),(3, d)\}
\end{aligned}
$$

Composition of Relations

If R_{1} is a relation from A to B and R_{2} is a relation from B to C, then the composition of R_{1} with $R_{2}\left(\right.$ denoted $\left.R_{1} \circ R_{2}\right)$ is the relation from A to C.

If (a, b) is a member of R_{1} and (b, c) is a member of R_{2}, then (a, c) is a member of $\mathbf{R}_{1} \circ \mathbf{R}_{\mathbf{2}}$, where $a \in A, b \in B, c \in C$.

Example 1: Let $A=\{1,2,3\}, B=\{a, b, c, d\} C=\{x, y, z\} R$: from A to $B:\{(1, a),(1, d),(2, c),(3$, a), (3, d)\}and S: from B to C: $\{(\mathbf{a}, \mathbf{x}),(b, x),(c, y),(c, z),(d, y)\} f i n d ~ S o R$.

SoR $=\varnothing$
$\operatorname{RoS}=\{(1, x),(1, y),(2, y),(3, x),(3, y)\}$
Example2: Let $\mathrm{A}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \quad \mathrm{B}=\{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}\}, \quad \mathrm{C}=\{\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}, \quad$ the relations $\mathbf{R}_{1}=\{(\mathbf{a}, \mathbf{z}),(\mathbf{b}, \mathbf{w})\}, \mathbf{R}_{2}=\{(\mathbf{w}, \mathbf{B}),(\mathbf{w}, \mathbf{D}),(\mathbf{x}, \mathbf{A})\}$. Find $\mathbf{R 1 o} \mathbf{R} \mathbf{2}$.

R1o R2 = $\{(\mathbf{b}, \mathbf{B}),(b, D)\}$

Example 3: Find $S \circ R$ from the relations $R=\{(1,1),(1,4),(\mathbf{2}, \mathbf{3}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, 4)\}$ and $S=\{(1,0),(\mathbf{2}, 0),(3,1),(3,2),(4,1)\}$
iv. Given a relation R from X to Y, a relation R from Y to X is called "Converse of R ". where the ordered pairs of \mathbf{R} (bar) are obtained by inter changing the members ineach of the ordered pairs of R.

This means for $x \in X$ and $y \in Y$, thet $\mathbf{x R y} \Leftrightarrow y R(b a r) x$
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$
$R($ bar $)=(1,1),(4,1),(3,2),(1,3),(4,3)\}$
Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$, and suppose we have the relations $R_{1}=\{(1,1),(2,2)$, $(3,3)\}$, and $R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}$. Then compute the operations on them.
$\mathbf{R}_{1} \cup \mathbf{R}_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$
$\mathbf{R}_{1} \cap \mathbf{R}_{2}=\{(\mathbf{1}, \mathbf{1})\}$
$\mathbf{R}_{1}-\mathbf{R}_{2}=\{(\mathbf{2}, 2),(3,3)\}$
$\mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}=\{(\mathbf{1}, \mathbf{2}),(\mathbf{1}, \mathbf{3}),(1,4)\}$

The Powers of a Relation

The powers of a relation R are recursively defined from the definition of a composite of two relations.

Let R be a relation on the set A. The powers R^{n}, for $n=1,2,3, \ldots$ are defined recursively by: $\quad \mathbf{R}^{1}=\mathbf{R}$

$$
\begin{aligned}
& \mathbf{R}^{2}=\mathbf{R} \circ \mathbf{R} \\
& \left.\mathbf{R}^{3}=\mathbf{R}^{2} \circ \mathbf{R}=(\mathbf{R} \circ \mathbf{R}) \circ \mathbf{R}\right)
\end{aligned}
$$

$$
\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathrm{n}} \circ \mathbf{R}
$$

Let $R=\{(1,1),(2,1),(3,2),(4,3)\}$ Find the powers R^{n}, where $n=1,2,3,4,5$.

$$
\begin{aligned}
& R^{1}=R=\{(1,1),(2,1),(3,2),(4,3)\} \\
& \mathbf{R}^{2}=\mathbf{R} \circ \mathbf{R}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{1}),(\mathbf{3}, \mathbf{1}),(4,2)\} \\
& \mathbf{R}^{3}=\mathbf{R}^{2} \circ \mathbf{R}=\{(1,1),(2,1),(3,1),(4,1)\} \\
& R^{4}=R^{3} \circ R=\{(1,1),(2,1),(3,1),(4,1)\}
\end{aligned}
$$

3.1.3. Transitive Closure

Important Note : A relation R on set $A_{\text {is transitive if and only if }} R^{n} \subset R$ for $n=1,2,3, \ldots$.

Closure of Relations :

Consider a relation R on set $A . R$ may or may not have a property P, such as reflexivity, symmetry, or transitivity. If there is a relation S with property P containing R such that S is the subset of every relation with property P containing R, then S is called the closure of R with respect to P.

We can obtain closures of relations with respect to property P in the following ways -

1. Reflexive Closure $-\Delta=\{(a, a) \mid a \in A\}$ is the diagonal relation on set A. The reflexive closure of relation R on set A is $R \cup \Delta$.
2. Symmetric Closure - Let R be a relation on set A, and let R^{-1} be the inverse of R. The symmetric closure of relation R on set A is $R \cup R^{-1}$.
3. Transitive Closure - Let R be a relation on set A. The connectivity relation is defined as $-R^{*}=\bigcup_{n=1}^{\infty} R^{n}$. The transitive closure of R is R^{*}.

Example - Let R be a relation on set $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Find the reflexive, symmetric, and transitive closure of R.

Solution -

For the given set, $\Delta=\{(1,1),(2,2),(3,3),(4,4)\}$. So the reflexive closure of R is

$$
R \cup \Delta=\{(1,1),(1,4),(2,2),(2,3),(3,1),(3,3),(3,4),(4,4)\}
$$

For the symmetric closure we need the inverse of R, which is

$$
R^{-1}=\{(1,1),(1,3),(3,2),(4,1),(4,3)\}
$$

The symmetric closure of R is-
$\{(1,1),(1,3),(1,4),(2,3),(3,1),(3,2),(3,4),(4,1),(4,3)\}$

For the transitive closure, we need to find R^{*}.
\therefore we need to find R^{1}, R^{2}, \ldots, until $R^{n}=R^{n-1}$. We stop when this condition is achieved since finding higher powers of R would be the same.
$R^{1}=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$
$R^{2}=\{(1,1),(1,4),(2,1),(2,4),(3,1),(3,4)\}$
$R^{3}=\{(1,1),(1,4),(2,1),(2,4),(3,1),(3,4)\}$
Since, $R^{2}=R^{3}$ we stop the process.
Transitive closure, $R^{*}=R^{1} \cup R^{2}$ -
$\{(1,1),(1,4),(2,1),(2,3),(2,4),(3,1),(3,4)\}$

3.1.4. Compatibility Relation

A relation R in set X is said to be a compatibility relation if it is reflexive and symmetric. Clearly all equivalence relations are compatibility relations.
Example: Let $\mathbf{X}=\{b$ ball, bed, dog, let, egg $\}$ and the relation R be given by
$R=\{(\mathbf{x}, \mathrm{y}) / \mathrm{x}, \mathrm{y} \in \mathbf{X} \wedge \mathbf{x} \mathbf{R} \mathbf{y}$ if \mathbf{x} and \mathbf{y} contain some common letter $\}$ then \mathbf{R} is compatibility relation, and x, y are called compatible. If $x R y$.

The compatibility relation is some times denoted by \approx.
Note that ball \approx bed, bed \approx egg. But ball \neq egg is not transitive.
Maximal Compatibility Relation
Let X be a set and R is a compatibility relation on X. A is a subset of X is called a maximal compatibility block if any element of A is compatible to every other element of A and no element of $X-A$ is compatible to all the elements of A.

3.1.5. Partial Ordering

A relation R on a set P is called a partial order relation or partial ordering on P, if R is
(1). Reflexive
(2). Antisymmetric
(3). Transitive.

POSet

We denote the Partial ordering by the symbol " \leq ". If \leq is a partial ordering on \mathbf{P}, then the ordered pair (\mathbf{P}, \leq) is called Partially Ordered Set or POSet.

If X is a partial ordering on P, then it is easy to see the converse of X, namely, $\overline{\mathbf{x}}$ is also partial ordering on P. if X is denoted by \leq, then $\overline{\mathbf{x}}$ is denoted $\mathbf{b y} \geq$.

This means that if (\mathbf{P}, \geq) is a POset and (\mathbf{P}, \geq) also POset .
Note: (\mathbf{P}, \geq) is called the dual of (\mathbf{P}, \geq).

- Example - Show that the inclusion relation \subseteq is a partial ordering on the power set of a set A.
- Solution - Since every set $S \subseteq S \subseteq \subseteq$ © is reflexive. If $S \subseteq R$ and $R \subseteq S$ then $R=S$, which means \subseteq is anti-symmetric. It is transitive as $R \subseteq S$ and $S \subseteq T$ implies $R \subseteq T$. Hence, \subseteq is a partial ordering on $P(S)$, and $(P(S), \subseteq)$ is a poset.

Important Note: The symbol $_$is used to denote the relation in any poset. The notation $a \prec b$ is used to denote $a \preceq b$ but $a \neq b$.

Example 2: Let R be a relation on set $A=\{1,2,3,4\}$ and $R=\{(1,1),(1,2)$, $(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$. Is R a partial order?

Sol: Given that $\mathrm{A}=\{1,2,3,4\}$ and
$R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
To be a partial order, R must be Reflexive, Antisymmetric, and Transitive.
R is Reflexive : Because R includes (1,1), $(2,2),(3,3)$ and $(4,4)$.
\mathbf{R} is Antisymmetric: Because for every pair (a,b) in $\mathbf{R},(\mathbf{b}, \mathbf{a})$ is not in \mathbf{R} (unless
$\mathrm{a}=\mathrm{b}$).
\mathbf{R} is Transitive: Because for every pair (a,b) in \mathbf{R}, if (b,c) is in \mathbf{R} then (a,c) is also in R.

So, the set $\mathbf{A}=\{1,2,3,4\}$ and relation $R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3)$, $(\mathbf{2}, 4),(3,3),(3,4),(4,4)\}$
R is a partial order, and (A, R) is a poset.

Example 3: Show that "greater than or equal to (\geq)" relation is a partial ordering on the set of integers.

Sol: To be a partial order, \mathbf{R} must be Reflexive, Anti-symmetric, and Transitive.

Reflexive: Since $\mathbf{a} \geq$ a for every integer \mathbf{a}.
Therefore, " \geq " is reflexive
Anti-symmetric: If $\mathbf{a} \geq \mathbf{b}$ and $\mathbf{b} \geq \mathbf{a}$, then $\mathbf{a}=\mathbf{b}$.
Hence " \geq " is anti-symmetric.
Transitive : finally, $\mathrm{a} \geq \mathrm{b}$ and $\mathrm{b} \geq \mathrm{c}$ implies $\mathrm{a} \geq \mathrm{c}$.
Hence " \geq " is transitive.
Therefore " \geq " is a partial ordering on the set of integers and (Z, \geq) is a poset.
Example 4: Show that " less than or equal to (\leq)" relation is a partial ordering on the set of integers.

Comparable / Incomparable

In a poset the notation $\mathbf{a} \preccurlyeq b$ denotes $(\mathbf{a}, \mathrm{b}) \in \mathbf{R}$
The "less than or equal to" ((\leq) is just an example of partial ordering
The elements a and b of a poset (\mathbf{S}, \leqslant) are called comparable if either $\mathbf{a} \leqslant b$ or bßa.

The elements a and b of a poset (\mathbf{S}, \leqslant) are called incomparable if neither $\mathbf{a} \leqslant b$ nor \mathbf{b} る.

- Example $-\ln$ the poset $\left(Z^{+}, \mid\right)$(where Z^{+}is the set of all positive integers and is the divides relation) are the integers 3 and 9 comparable? Are 7 and 10 comparable?
- Solution - 3 and 9 are comparable since $3 \mid 9$ i.e. 3 divides 9 . But 7 and 10 are not comparable since $7 \nmid 10$ and $10 \nmid 7$.

Total Order

Let (\mathbf{P}, \leq) be a POSet. If for every $\mathrm{x}, \mathrm{y} \in \mathrm{P}$ we have either $\mathrm{x} \leq \mathrm{y}$ or $\mathrm{y} \leq \mathrm{x}$ then " \leq " is called a Simple Ordering or Linear Ordering on \mathbf{P} and (\mathbf{P}, \leq) is called a Totally Ordered or Simply Ordered Set or a Chain.

We said "Partial ordering" because pairs of elements may be incomparable. If every two elements of a poset (S, \preccurlyeq) are comparable, then S is called a totally ordered or linearly ordered set and \leqslant is called a total order or linear order.

Example 1: The poset (Z, \leq) is totally ordered. Why?
Every two elements of \mathbf{Z} are comparable; that is, $\mathbf{a} \leq b$ or $\mathbf{b} \leq \mathbf{a}$ for all integers.

Example 2: The poset $\left(Z^{+}, \mid\right)$is not totally ordered. Why?
It contains elements that are incomarable; for example 5/7.

3.1.6. Hasse Diagram

A partial order, being a relation, can be represented by a di-graph. But most of the edges do not need to be shown since it would be redundant.
For instance, we know that every partial order is reflexive, so it is redundant to show the self-loops on every element of the set on which the partial order is defined.
Every partial order is transitive, so all edges denoting transitivity can be removed. The directions on the edges can be ignored if all edges are presumed to have only one possible direction, conventionally upwards.

In general, a partial order on a finite set can be represented using the following procedure -

1. Remove all self-loops from all the vertices. This removes all edges showing reflexivity.
2. Remove all edges which are present due to transitivity i.e. if (a, b) and (b, c)
are in the partial order, then remove the edge (a, c). Furthermore if (c, d) is in the partial order, then remove the edge (a, d).
3. Arrange all edges such that the initial vertex is below the terminal vertex.
4. Remove all arrows on the directed edges, since all edges point upwards.

Example 1: Construct the Hasse diagram for ($\{1,2,3\}, \leq$)

Example 2: Construct the Hasse diagram for ($\{1,2,3,4\}, \leq$) "less than or equal

Steps in the

 constructionof the
Ilasse diagram
for
$(\{1,2,3,4\}, \leq)$

(a)

(b)
(c)

Example 3: Construct the Hasse diagram for (\{1, 2, 3, 4, 6, 8, 12\}, /)

Steps in the construction of the IIasse diapram for
$(\{1,2,3,4,6,8,12\}, 1)$

(a)

(b)

4. Construct the Hasse diagram for $\mathrm{A}=\{2,3,6,12,24,36\}$ and the relation \leq be such that $\mathrm{x} \leq \mathrm{y}$ if x divides y .
5. Construct the Hasse diagrams for ($\mathbf{P}(\mathbf{a}), \subseteq)$. Let A be a given finite set and $\mathbf{P}(\mathbf{A})$ its power set. Let \subseteq be the inclusion relation on the elements of $\mathbf{P}(\mathbf{A})$.
(a) $\mathrm{A}=\{\mathrm{a}\}$
(b) $\mathbf{A}=\{\mathrm{a}, \mathrm{b}\}$
(c) $\mathbf{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

Example

Let $S=\{a, b, c\}$ and $A=P(S)$. Draw the Hasse diagram of the poset A with the partial order ' \subseteq '

Example 2: Let S_{n} be the set of all divisors of n.
(a) $\mathrm{n}=6$
(b). $\mathrm{n}=24$
©. $n=8$
Draw the Hasse diagrams

Note: For a given POSet, the Hasse diagram is not unique.

Let $(\mathbf{P}, \preccurlyeq)$ be a poset. An element $\mathbf{y} \in \mathbf{P}$ is called a is minimal number of P relation to a partial ordering \preccurlyeq if for no $x \in P$ is $x<y$. (bottom of the Hasse diagram)

Let $(\mathbf{P}, \preccurlyeq)$ be a poset. An element $\mathbf{y} \in \mathbf{P}$ is called a is maximal number of \mathbf{P} relation to a partial ordering \leqslant if for no $x \in P$ is $y<x$. (top of the Hasse diagram)

Note: (1). A minimal number need not be unique. All those members which appears at the lowest level of Hasse diagram of a POSet are minimal numbers.
(2). Distinct minimal numbers are incomparable and distinct maximal numbers are incomparable.

Let (S, \preccurlyeq) be a POSet. a is the Greatest Element of (S, \preccurlyeq) if $b \preccurlyeq a$ for all $b \in S$. It must be unique.

Let $(\mathbf{S}, \preccurlyeq)$ be a POSet. a is the Least Element of $(\mathbf{S}, \preccurlyeq)$ if $\mathbf{a} \leqslant b$ for all $\mathrm{b} \in \mathbf{S}$. It must be unique

- Does the poset represented by this Hasse diagram have a greatest element? If so, what is it? Does it have a least element? If so, what is it?

The poset represented by this Hasse diagram does not have a least element, because the least element must be unique.

It does have a greatest element, d

- Does the poset represented by this Hasse diagram have a greatest element? If so, what is it? Does it have a least element? If so, what is it?

The poset represented by this Hasse diagram does not have a greatest element, because the greatest element must be unique.

It does have a least element, a.

- Does the poset represented by this Hasse diagram have a greatest element? If so, what is it? Does it have a least element? If so, what is it?

- Does the poset represented by this Hasse diagram have a greatest element? If so, what is it? Does it have a least element? If so, what is it?
The poset represented by
this Hasse diagram has
neither a greatest element
nor a least telement,
because they must be
unique.

Let (P, \preccurlyeq) be a POSet and A be a subset of P. Any element $u \in P$ is upper bound for A. If for all $\mathbf{a} \in \mathrm{A}$, such that $\mathbf{a} \preccurlyeq \mathbf{u}$. then \mathbf{u} is called Upper Bound of \mathbf{A}.

Let (P, \preccurlyeq) be a POSet and A be a subset of P. Any element $l \in P$ is lower bound for A. If for all $a \in A$, such that $l \leqslant a$. then l is called Lower Bound of A.
Example 1: Let us
consider (P(A), $\subseteq)$
we choose a subset
B of $P(A)$ is $\{\{b, c\}$,
$\{b\},\{c\}\}$ then A is
upper bound of B
and \varnothing is lower
bound of B.

Example 2: Let us consider ($\mathbf{P}(\mathbf{A}), \subseteq)$ we choose a subset B of $\mathbf{P}(A)$ is $\{\{\mathrm{a}, \mathrm{c}\},\{\mathrm{c}\}\}$ then \mathbf{A} is upper bound of B and \emptyset is lower bound of B.

Note: Upper and lower bounds of a subset are not necessarily unique.

Let $(\mathbf{P}, \preccurlyeq)$ be a POSet and $A \subseteq P$. Any element $\mathbf{u} \in \mathbf{P}$ is a Least Upper Bound(LUB) or Supremum for A. If \mathbf{u} is an upper bound for A and $u \preccurlyeq y . y$ is any upper bound for A. It must be unique.

Let $(\mathbf{P}, \preccurlyeq)$ be a POSet and $A \subseteq P$. Any element $l \in P$ is a Greatest Lower Bound(GLB) or Minimum for A. If l is an lower bound for A and $y \leqslant l . y$ is any Lower bound for A. It must be unique.

Example: From the below Hasse diagram, Find the Maximal, Minimal, Greatest element, Least element, UB, LUB, LB and GLB of $\{a, b, c\}$.

Maximal	$: \mathbf{h}, \mathbf{j}$
Minimal	$: \mathbf{a}$
Greatest element	$:$ None
Least element	$: \mathbf{a}$
Upper bound of $\{\mathbf{a , b , c}\}$	$: \mathbf{e , f , j}, \mathbf{h}$
Least upper bound of $\{\mathbf{a}, \mathbf{b , c}\}$	$: \mathbf{e}$
Lower bound of $\{\mathbf{a , b , c}\}$	$: \mathbf{a}$
Greatest lower bound of $\{\mathbf{a , b , c}\}$	$: \mathbf{a}$

Example: From the below Hasse diagram, Find the UB, LUB, LB and GLB of B1= $\{\mathrm{a}, \mathrm{b}\}, \mathrm{B} 2=\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$.

(a) Since B1 has no lower bounds, it has no greatest lower bounds; However, LUB(B1)=c
(b)Since the lower bounds of B2 are c, a and b, we find that GLB(B2) $=\mathrm{c}$
The upper bounds of B2 are f, g and h. Since f and g are not comparable, we conclude that B2 has no least upper bound.

- Unit element

The greatest element of a poset, if it exists, is denoted by I and is often called the unit element.

- Zero element

The least element of a poset, if it exists, is denoted by 0 and is often called the zero element.

3.1.7. Lattice:

A lattice is a POSet (L, \preccurlyeq) in which every pair of elements $a, b \in L$ has a LUB and GLB.
The GLB of a sub set $\{a, b\} \subseteq L$ will be denoted by $a * b$ and $L U B$ denoted by $a \oplus b$.
That is ,
$\operatorname{GLB}\{\mathbf{a}, \mathbf{b}\}=\mathbf{a}^{*} \mathbf{b}$ (product of \mathbf{a}, \mathbf{b}) or $\mathrm{a} \wedge \mathrm{b}$ (meet of \mathbf{a} and \mathbf{b})
$\mathbf{L U B}\{\mathbf{a}, \mathrm{b}\}=\mathbf{a} \oplus b$ (Sum of $a, b)$ or $a \vee b$ (Join of a and b)
From the definitions of lattice that both * and \bigoplus are binary operations on \mathbf{L} because of the uniqueness of the LUB and GLB of any subsets of POSet.
it is obvious that, a totally ordered set is trivially a lattice, but not all partially ordered sets are lattices can be concluded from Hasse diagrams of POSets.

Example 1: Let I^{+}be the set of all positive integers and D denote the relation of " Division", in \mathbf{I}^{+}such that for any $\mathbf{a}, \mathbf{b} \in \mathbf{I}^{+} \mathbf{a D b} \Leftrightarrow$ a divides \mathbf{b} then $\left(\mathbf{I}^{+}, \mathbf{D}\right)$ is a lattice in which $a \oplus b=L C M$ of a and $b, a^{*} b=G C D$ of a and b.

Lattices

= Example
Let n be a positive integer and D be the set of all positive divisors of n. Then D_{a} is a lattice under the relation of divisibility. For instance,

$$
D_{20}=\{1,2,4,5,10,20\}
$$

$$
D_{30}=\{1,2,3,5,6,10,15,20\}
$$

Are the following three POSets lattices?

Yes

No; elements b and chave no least upper bound.

Yes

Properties of Lattices

1. Idempotent Properties
a*a=a
$\mathbf{a} \oplus \mathbf{a}=\mathbf{a}$
2. Absorption Properties
$\mathbf{a}^{*}(\mathbf{a} \oplus \mathbf{b})=\mathbf{a}$
$\mathbf{a} \oplus\left(\mathbf{a}^{*} \mathbf{b}\right)=\mathbf{a}$
3. Commutative Properties
$a * b=b * a$
$\mathbf{a} \oplus \mathbf{b}=\mathbf{b} \oplus \mathbf{a}$
4. Associative Properties
$\mathbf{a}^{*}\left(\mathbf{b}^{*} \mathbf{c}\right)=(\mathbf{a} * \mathbf{b}) * \mathbf{c}$
$\mathbf{a} \oplus(\mathbf{b} \oplus \mathbf{c})=(\mathbf{a} \oplus \mathbf{b}) \oplus \mathbf{c}$

Properties of Lattices

Idempotent Properties

- $a \vee a=a$
- $a \wedge a=a$

Absorption Properties

$$
\begin{aligned}
& a \vee(a \wedge b)=a \\
& a \wedge(a \vee b)=a
\end{aligned}
$$

Commutative Properties

$$
\begin{aligned}
& \quad a \vee b=b \vee a \\
& a \wedge b=b \wedge a
\end{aligned}
$$

Associative Properties

$$
\begin{aligned}
& a \vee(b \vee c)=(a \vee b) \vee c \\
& a \wedge(b \wedge c)=(a \wedge b) \wedge c
\end{aligned}
$$

Dual of a Lattice

The dual of a lattice is obtained by interchanging the '*' and ' \oplus ' operations.
Example The dual of $\left[a^{*}(b \oplus c)\right]$ is $[a \oplus(b * c)]$

Dual of a Lattice

Let R be a partial order on a set A, and let R^{\prime} be the inverse relation of R. Then $\mathrm{R}^{\text {is also a partial order. }}$
The poset $\left(A, R^{\prime}\right)$ is galled the dual of the poset (A, R).
whenever (A, \leq) is a poset, we use " \geq " for the partial order ≤ 1
" Dual of a lattice: Let (L, \leq) be a lattice, then the (L, \geq) is called dual lattice of (L, \leq).
" Note: Dual of dual lattice is original lattice.
" Note: In $(\mathrm{L}, \leq$), if $\mathrm{a} \vee \mathrm{b}=\mathrm{c} ; \mathrm{a} \wedge \mathrm{b}=\mathrm{d}$, then in dual lattice (L, \geq), $\mathrm{a} \vee \mathrm{b}=\mathrm{d} ; \mathrm{a} \wedge \mathrm{b}=\mathrm{c}$
" Principle of duality: If P is a valid statement in a lattice, then the statement obtained by interchanging meet and join everywhere and replacing \leq by \geq is also a valid statement.
"Example
Fig. a shows the Hasse diagram of a poset (A, ப), where

$$
A=\{a, b, c, d, e, f\}
$$

Fig, b shows the Hasse diagram of the dual poset (A, \geq)

Bounded Lattices

= Bounded
A lattice L is said to be bounded if it has a greatest element 1 and a least element O
For instance:
Example: The lattice $P(S)$ of all subsets of a set S, with the relation containment is bounded. The greatest element is S and the least element is empty set.

Example : The lattice Z^{+}under the partial order of divisibility is not bounded, since it has a least element 1 , but no greatest element.
= If L is a bounded lattice, then for all a in A

$$
\begin{aligned}
& 0 \leq a \leq 1 \\
& \mathbf{a} \vee 0=\mathbf{a}, \quad a \vee 1=1 \\
& \mathbf{a} \wedge 0=0, \quad a \wedge 1=\mathbf{a}
\end{aligned}
$$

Note: $1(0)$ and a are comparable, for all a in A .

Distributive Lattices

- Distributive

A lattice (L, \leq) is called distributive if for any elements a, b and c in L we have the following distributive properties:

1. $\mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})=(\mathrm{a} \wedge \mathrm{b}) \vee(\mathrm{a} \wedge \mathrm{c})$
2. $\mathrm{a} \vee(\mathrm{b} \wedge \mathrm{c})=(\mathrm{a} \vee \mathrm{b}) \wedge(\mathrm{a} \vee \mathrm{c})$

If L is not distributive, we say that L is nondistributive.
Note: the distributive property holds when
a. any two of the elements a, b and c are equal or
b. when any one of the elements is 0 or I.

" Example

Show that the lattices as follows are non-distributive.

Pentagonal Lattice

$a \wedge(b \vee c)=a \wedge I=a$
$a \wedge(b \vee c)=a \wedge I=a$
$(a \wedge b) v(a \wedge c)=b \vee 0=b$

Distributive Lattices

- Example

For a set S , the lattice $\mathrm{P}(\mathrm{S})$ is distributive, since join and meet each satisfy the distributive property.

- Example

The lattice whose Hasse diagram shown in adjacent diagram is distributive.

Modular Lattices

A lattice (L, \leq) is called Modular if for any elements \mathbf{a}, b and c in L if $\mathrm{b} \leq \mathbf{a}$ then

$$
b \vee(a \wedge c)=a \wedge(b \vee c)
$$

- Example

For a set S, the lattice
$P(S)$ is modular, (if $B \subseteq A$) $B \cup(A \cap C)=A \cap(B \cup C)$

- Example

Every chain is a modular lattice

- Example: Given Hasse diagram of a lattice which is modular

Complemented Lattice

- Complement of an element:

Let L be bounded lattice with greatest element 1 and least element 0 , and let a in L. An element b in L is called a complement of a if

$$
a \vee b=1 \text { and } a \wedge b=0
$$

Note: $0^{\prime}=1$ and $l^{\prime}=0$

- Complemented Lattice:

A lattice L is said to be complemented if it is bounded and every element in it has a complement.
" Example
The lattice $\mathrm{L}=\mathrm{P}(\mathrm{S})$ is such that every element has a complement, since if A in L, then its set complement A has the properties $\mathrm{A} \vee \overline{\mathrm{A}}=\mathrm{S}$ and $\mathrm{A} \wedge \overline{\mathrm{A}}=\phi$. That is, the set complement is also the complement in L .
" Example : complemented lattices where complement of element is not unique

- D_{30} is complemented lattice

20	Element	Its Complement		
	1	20	Element	Its Complement
- 10	2	10	1	30
	4	5	2	15
	5	4	3	10
-	10	2	5	6
	20	1	6	5
			10	3
D_{20}			15	2
	$2 \wedge 10 \neq 0$	$2 \wedge 10=2)$	30	1

3.2.1. Algebraic systems

A Set together with one or more n-ary operations is called an Algebraic System or simply an Algebra.
An n-ary operation on a set X which is a mapping from X^{n}-> X.
If $\mathbf{n}=\mathbf{1}$ such operation is called Unary Operation.
If $\mathbf{n}=\mathbf{2}$, it is called Binary Operation.
Since the operations and relations on the set S define a structure on the elements of S , an algebraic system is called Algebraic Structure.
$N=\{1,2,3,4, \ldots \ldots \propto\}=$ Set of all natural numbers.
$Z=\{0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots \ldots \propto\}=$ Set of all integers.
Q = Set of all rational numbers.
$R=$ Set of all real numbers.

■Binary Operation: Let A be a non empty set. The * is said to be a binary operation (closed operation) on a non empty set A, if $a * b \in A \quad \forall a, b \in A$ (Closure property).
Ex: The set \mathbf{N} is closed with respect to addition and multiplication but not w.r.t subtraction and division.

■Algebraic System: A set ' A ' with one or more binary(closed) operations defined on it is called an algebraic system.

Ex: ($\mathrm{N},+$), (Z, +, -), (R, +, , -) are algebraic systems.

3.2.2. General Properties

■ Closure: Let * be a binary operation on a set A. The operation * is said to be Closure in A, if $\mathbf{a *} \mathbf{b} \in A \forall a, b \in A$

■ Associative: Let * be a binary operation on a set A. The operation * is said to be associative in A if (a*b)* $=a^{*}\left(b^{*} c\right), \forall a, b, c \in A$

- Identity: Let a be an element in A. An element \mathbf{e} is said to be identity of \mathbf{A} if $a^{\star} e=e^{\star} a=a, \forall a \in A$.

Note: For an algebraic system ($A,{ }^{*}$), the identity element, if exists, is unique.

■Inverse: Let ($\mathrm{A}, \mathrm{*}^{*}$) be an algebraic system with identity ' e '. Let a be an element in A. An element b is said to be inverse of A if $a^{*} b=b^{*} a=e, \forall a, b \in A$.
-Commutative: Let * be a binary operation on a set A. The operation * is said to be commutative in A, if $a^{*} b=b^{*} a, \forall a, b \in A$

■ldempotent: Let ($\mathrm{A},{ }^{*}$) be an algebraic system. Let a be an element in A .

$$
\mathbf{a}^{*} \mathbf{a}=\mathbf{a}, \forall \mathbf{a} \in \mathbf{A} .
$$

-Distributive: Let (A, *) be an algebraic system. Let a,b,c are element in A.

$$
\begin{aligned}
& a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right), \\
& a+\left(b^{*} c\right)=(a+b)^{\star}(a+c), \forall a, b, c \in A .
\end{aligned}
$$

-Cancellation: Let (A, *) be an algebraic system. Let a,b,c are element in A and $\mathbf{a} \neq 0$.

$$
\begin{aligned}
\mathbf{a}^{*} \mathbf{b} & =\mathbf{a}^{*} \mathbf{c} \\
\Leftrightarrow \mathbf{b} & =\mathbf{c} \forall a, b, c \in A .
\end{aligned}
$$

-Let $\left(\mathrm{S},{ }^{*}\right)$ and (H, o) be two algebraic systems then a mapping f: S $\rightarrow \mathrm{H}$ from ($\mathrm{S},{ }^{*}$) to (H, o) satisfying the property that

$$
f\left(a^{*} b\right)=f(a) \circ f(b) \text { for any } a, b \in S
$$

is called Homomorphism or simply Morphism.
-Let f be a homomorphism from ($\mathrm{S},{ }^{*}$) to (H, o).
If mapping $f: S \rightarrow H$ from $\left(S,{ }^{*}\right)$ to (H, o) is onto then f is called Epimorphism.
If $f: S \rightarrow H$ is one-to-one then f is called Monomorphism.
If $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{H}$ is both one-to-one and onto then f is called Isomorphism.
If $f: S \rightarrow H$ is an isomorphic mapping then $\left(S,{ }^{*}\right)$ to ($H, 0$) are called as Isomorphic.

Let ($\mathrm{S},{ }^{*}$) and (H, o) be two algebraic systems such that $\mathrm{H} \subseteq \mathrm{S}$ then a homomorphism ffrom ($\mathrm{S},{ }^{*}$) and (H, o) is called Endomorphism.
An isomorphism from ($\mathrm{S},{ }^{\star}$) to (H, o) is called an Automorphism if $\mathrm{H}=\mathrm{S}$.
-Let ($\mathrm{S},{ }^{*}$) be an algebraic system and $\mathrm{A} \subseteq \mathrm{S}$, if A is closed under the operation * then ($\mathrm{A},{ }^{*}$) is called sub Algebra of ($\mathrm{S},{ }^{*}$)

3.2.3. Semi Group

An algebraic system ($A,{ }^{*}$) is said to be a semi group if

1. * is closed on A. that is, $a * b \in A \forall a, b \in A$
2. * is an associative, $\forall a, b, c$ in A. that is, $(a * b) * c=a *(b * c)$

Ex. ($\mathbf{N},+$), ($\mathbf{N},$.) are Semi Groups and ($\mathrm{N},-)$ is not a Semi Group.
Sub semigroup
Let ($\mathrm{S},{ }^{*}$) be a Semi Group and let T be a subset of S . If T is closed under operation * , then ($\mathrm{T},{ }^{*}$) is called a sub Semi Group of ($\mathrm{S},{ }^{*}$).
Ex: ($\mathrm{N},$.) is Semi Group and T is set of multiples of positive integer m then ($\mathrm{T},$. is a sub Semi Group.

Abelian Semi Group: Let (S, *) be any set of algebraic system where S is non empty set and * be a binary relation on S. if the * is commutative in S then ($S,{ }^{*}$) is called Abelian or Commutative Semi Group for any $\mathbf{a , b} \in \mathbf{S}, \mathbf{a * b}=\mathbf{b}^{*} \mathbf{a}$.

Monoid

An algebraic system (A, *) is said to be a Monoid if the following properties are satisfied.

1) ${ }^{*}$ is a closed in A. That is, $a{ }^{*} b \in A \forall a, b \in A$.
2) * is an associative $\forall \mathbf{a}, \mathbf{b}, \mathbf{c}$ in A. that is, (a * b) * $c=a^{*}\left(b^{*} c\right)$.
3) There is an identity in A. if a * $e=e^{*} a=a, \forall a \in A$.

Sub Monoid

Let ($\mathrm{S},{ }^{*}$) be a Monoid with identity e , and let T be a non- empty subset of S . If T is closed under the operation * and $e \in T$, then ($T,{ }^{*}$) is called a Sub Monoid of (S, *).

Abelian Monoid

Let ($\mathrm{S},{ }^{*}$) is a Semi Group satisfying the identity property with respect to * and also if it is commutative, then it is known as Abelian or Commutative Monoid.

Example 1: Show that the set ' N ' is a monoid with respect to multiplication.
Solution: Given that $N=\{1,2,3,4, \ldots \ldots\}$ and the binary operation.

1. Closure property : We know that product of two natural numbers is again a natural number. i.e., $a . b \in \mathbf{N} \forall a, b \in N$.
\therefore Multiplication is a closed operation.
2. Associativity : Multiplication of natural numbers is associative.

$$
\text { i.e., (a.b).c = a.(b.c) } \forall a, b, c \in N
$$

3. Identity: We have, $1 \in \mathbf{N}$ such that

$$
a .1=1 . a=a, \forall a \in \mathbb{N} .
$$

\therefore Identity element exists, and 1 is the identity element.
Hence, N is a monoid with respect to multiplication.

Example 2: Show that the set ' N ' is not a monoid with respect to addition.

Solution: Given that $\mathbf{N}=\{1,2,3,4, \ldots \ldots\}$ and the binary operation +.

1. Closure property : We know that addition of two natural numbers is again a natural number. i.e., $a+b \in N \quad \forall a, b \in N$.
\therefore Addition is a closed operation.
2. Associativity : Addition of natural numbers is associative.

$$
\text { i.e., }(a+b)+c=a+(b+c) \forall a, b, c \in N
$$

3. Identity: We have, $0 \notin \mathrm{~N}$ such that

$$
a+0=0+a=a, \forall a \in N .
$$

\therefore Identity element does not exists.
Hence, \mathbf{N} is a not a monoid with respect to addition.

$$
\mathbb{N}=\{1,2,3,4,5,6 \ldots\}
$$

Example 3: Let $\left(Z,{ }^{*}\right)$ be an algebraic structure, where Z is the set of integers and the operation * is defined by n * $m=$ maximum of (n, m).S.T. ($Z,{ }^{*}$) is a semi group. Is (Z, *) a monoid?. Justify your answer.

Solution: Given that ($Z,{ }^{*}$) be an algebraic structure, where \mathbf{Z} is the set of integers and the operation * is defined by \mathbf{n} * $m=$ maximum of (n, m). Let a, b and c are any three integers.

1. Closure: Now, a * $b=$ maximum of $(a, b) \in Z, \forall a, b \in Z$
2. Associativity: (a * b) * $c=$ maximum of $\{a, b, c\}=a *(b * c)$
$\therefore\left(\mathrm{Z},{ }^{*}\right)$ is a semi group.
3. Identity: There is no integer x such that

$$
a * x=\text { maximum of }(a, x)=a, \forall a \in Z
$$

\therefore Identity element does not exist. Hence, $\left(Z,{ }^{*}\right)$ is not a monoid.
\therefore The given algebraic structure does not have an identity element since it is defined on the set of Integers and there is no minimum element in the set of integers.
\therefore Since it does not have an identity element, it is not a Monoid and consequently not a
Group or Abelian Group.

Semi group Homomorphism

Let ($\mathrm{S},{ }^{*}$) and (T, o) be two semi groups. A mapping $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ satisfying the properties that $f\left(s_{1}{ }^{*} s_{2}\right)=f\left(s_{1}\right) \circ f\left(s_{2}\right)$ is called a semigroup homomorphism, where $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathbf{S}$
1.If f is one to-one then it is called Monomorphism.
2.If f is onto then it is called epimorphism.
3.If \mathbf{f} is both one-to-one and onto then it is called Isomorphism.
4.An isomorphism defined from a semigroup to itself is called automorphism.

Monoid Homomorphism

Let ($\mathrm{S},{ }^{*}$) and (T, o) be two monoids with identity elements e_{S} and e_{T} respectively. A mapping $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ is called monoid homomorphism if it satisfies the following properties,

1. $f\left(s_{1}{ }^{*} s_{2}\right)=f\left(s_{1}\right) \circ f\left(s_{2}\right)$ and
2. $f\left(\mathrm{e}_{\mathrm{S}}\right)=\mathrm{e}_{\mathrm{T}}$

3.2.4. Group

An algebraic system (G, * $^{\text {) }}$ is said to be a group if the following properties are holds.

1) * is a Closed: $\forall a, b \in G, a * b \in G$.
2) * is an Associative: that is, $\forall a, b, c \in G .(a * b) * c=a *(b * c)$.
3) Identity: $\forall a \in G$ there exists an element $e \in G$ then, $a^{*} e=e^{*} a=a$.
4) Inverse: $\forall a \in G$ there exists an element $a^{-1} \in G$ then, $a^{*} a^{-1}=a^{-1 *} a=e$.

Abelian group (Commutative group): A group ($\mathrm{G},{ }^{*}$) is said to be abelian (or commutative) if * is commutative in S. that is $a^{*} b=b * a \forall a, b \in G$.

Order of a Group: the order of a group ($\mathrm{S},{ }^{*}$) is denoted by |S|, is the number of elements of S when S is finite.

Finite group: If the order of a group G is finite, then G is called a finite group.

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}\right\}
$$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

$$
\mathbb{R}=\mathbb{Q} \cup \mathbb{Z}
$$

Both rational numbers and irrational numbers are real numbers.

Example 1: Show that set of all non zero real numbers is a group with respect to multiplication.

Solution: Given that, $\mathbf{R}^{*}=$ set of all non zero real numbers and Multiplication is Binary Operation. Let $\mathbf{a}, \mathrm{b}, \mathrm{c}$ are any three elements $\in \mathbf{R}^{*}$.

1. Closure: We know that, product of two nonzero real numbers is again a nonzero real number . i.e., $a . b \in \mathbf{R}^{*} \forall a, b \in \mathbf{R}^{*}$.
2.Associativity: We know that multiplication of real numbers is associative. i.e., (a.b).c = a.(b.c) $\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}^{*}$.
2. Identity: We have $1 \in \mathbf{R}^{*}$ and $a .1=1 . a, \forall a \in R^{*}$.
\therefore Identity element exists, and ' 1 ' is the identity element.
3. Inverse: To each $a \in R^{*}$, we have $1 / a \in \mathbf{R}^{*}$ such that $a .(1 / a)=1$
i.e., Each element in \mathbf{R}^{*} has an inverse.
5.Commutativity: We know that multiplication of real numbers is commutative. i.e., $a . b=b . a \forall a, b \in R^{*}$.

Example 2: Show that the set of all integers is a group with addition.

Solution: Given that $\mathrm{Z}=$ set of all integers and Multiplication is Binary Operation. Let a, b, c are any three elements of \mathbf{Z}.

1. Closure: We know that, Sum of two integers is again an integer.

$$
\text { i.e., } \quad a+b \in Z, \forall a, b \in Z
$$

2. Associativity: We know that addition of integers is associative.

$$
\text { i.e., }(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c}), \forall \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z} \text {. }
$$

3. Identity: We have $0 \in Z$ and $a+0=a, \forall a \in Z$.
\therefore Identity element exists, and ' 0 ' is the identity element.
4. Inverse: To each $a \in Z$, we have $-a \in Z$ such that $a+(-a)=0$

Each element in Z has an inverse.
5. Commutative: We know that addition of integers is commutative.

$$
\text { i.e., } \quad a+b=b+a, \forall a, b \in Z .
$$

Hence, (Z, +) is an abelian group.

Example 3: Show that set of all real numbers ' R ' is not a group with respect to multiplication

Solution: Given that R=set of all real numbers and Multiplication is Binary Operation. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are any three elements of \mathbf{Z}.

1. Closure: We know that, Sum of two integers is again an integer.

$$
\text { i.e., } \quad a . b \in R, \forall a, b \in R
$$

2. Associativity: We know that addition of integers is associative.

$$
\text { i.e., (a.b).c = a.(b.c), } \forall \mathbf{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R} .
$$

3. Identity: We have $1 \in R$ and $a .1=a, \forall a \in Z$.
\therefore Identity element exists, and ' 1 ' is the identity element.
4. Inverse: To each $a \in R$, we have $1 / a \in Z$ such that $a .(1 / a)=1$

But The multiplicative inverse of 0 does not exist.
Hence. R is not a group

Example 4: Show that the set of all strings ' S ' is a monoid under the operation 'concatenation of strings'. Is S a group w.r.t the above operation? Justify your answer.

Solution: Let us denote the operation 'concatenation of strings' by +.
Let $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathrm{~s}_{3}$ are three arbitrary strings in S .

1. Closure property: Concatenation of two strings is again a string.

$$
\text { i.e., } \mathbf{s}_{1}+\mathbf{s}_{2} \in S
$$

2. Associativity: Concatenation of strings is associative.

$$
\left(s_{1}+s_{2}\right)+s_{3}=s_{1}+\left(s_{2}+s_{3}\right)
$$

3. Identity: We have null string , $\lambda \in S$ such that $s_{1}+\lambda=S$.
$\therefore \mathrm{S}$ is a monoid.
Note: S is not a group, because the inverse of a non empty string does not exist under concatenation of strings.

Example 5: Let S be a finite set, let $\mathrm{F}(\mathrm{S})$ be the collection of all functions $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ under the operation of composition of functions, then Show That $\mathrm{F}(\mathrm{S})$ is a monoid. Is S a group w.r.t the above operation? Justify your answer.

Solution: Let f_{1}, f_{2}, f_{3} are three arbitrary functions on S .

1. Closure: Composition of two functions on S is again a function on S .

$$
\text { i.e., } f_{1} \circ f_{2} \in F(S)
$$

2. Associativity: Composition of functions is associative.

$$
\text { i.e., }\left(f_{1} \circ f_{2}\right) \circ f_{3}=f_{1} \circ\left(f_{2} \circ f_{3}\right), \forall f_{1}, f_{2}, f_{3} \in F(S)
$$

3. Identity: We have identity function $I: S \rightarrow S$ such that $f_{1} \circ I=f_{1}$.
$\therefore \mathrm{F}(\mathrm{S})$ is a monoid.
Note: $\mathrm{F}(\mathrm{S})$ is not a group, because the inverse of a non bijective function on S does not exist.

Example 6: Show That the set of all positive rational numbers forms an abelian group under the composition * defined by a * $b=(a b) / 2$.

Solution: Let given $\mathbf{A}=$ set of all positive rational numbers and the composition * defined by a * $\mathbf{b}=(\mathrm{ab}) / 2$.

Let $\mathbf{a , b}, \mathrm{c}$ are any three elements of A .

1. Closure: We know that, Product of two positive rational numbers is again a rational number. i.e., $a * b \in A \forall a, b \in A$.
2. Associativity: (a*b)* ${ }^{*}=(a b / 2) * c=(a b c) / 4$

$$
a^{*}\left(b^{*} c\right)=a^{*}(b c / 2)=(a b c) / 4
$$

Therefore $\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)=(a b c) / 4$ and associative law holds.
3. Identity: Let e be the identity element. We have $\mathrm{a}^{*} \mathrm{e}=(\mathrm{ae}) / 2$...(1)

By the definition of * again, $\quad a^{*} e=a \quad(2)$, Since e is the identity.
From (1)and (2), (ae)/2 =a $\quad \Rightarrow \mathrm{e}=2$ and $2 \in \mathrm{~A}$.
\therefore Identity element exists, and ' 2 ' is the identity element in A.
4. Inverse: Let $a \in A$
let us suppose \mathbf{b} is inverse of \mathbf{a}.
Now, $a^{*} b=(a b) / 2 \ldots(1) \quad$ (By definition of inverse.)
Again, $a * b=e=2 \ldots$....(2) (By definition of inverse)

From (1) and (2), it follows that

$$
\begin{aligned}
& (a b) / 2=2 \\
& \Rightarrow b=(4 / a) \in A
\end{aligned}
$$

$\therefore\left(A,{ }^{*}\right)$ is a group.
5. Commutativity: $\quad a * b=(a b / 2)=(b a / 2)=b * a$

Hence, ($\mathrm{A},{ }^{*}$) is an abelian group.

Example 7: If M is set of all non singular matrices of order ' $n \times n$ '. S.T M is a group w.r.t. matrix multiplication. Is (M, *) an abelian group?. Justify your answer.

Solution: Let $A, B, C \in M$.
1.Closure: Product of two non singular matrices is again a non singular matrix, because $|A B|=|A| .|B| \neq 0$ (Since, A and B are nonsingular) i.e., $A B \in M \forall A, B \in M$.
2. Associativity: Matrix multiplication is associative.

$$
\text { i.e., }(A B) C=A(B C) \forall A, B, C \in M \text {. }
$$

3. Identity: We have $I_{n} \in M$ and $A . I_{n}=A, \forall A \in M$.
\therefore Identity element exists, and ' I_{n} ' is the identity element.
4. Inverse: To each $A \in M$, we have $A^{-1} \in M$ such that

$$
A . A^{-1}=I_{n} \quad \text { i.e., Each element in } M \text { has an inverse. }
$$

$\therefore \mathrm{M}$ is a group w.r.t. matrix multiplication.
5. Abelian: We know that, matrix multiplication is not commutative.

Hence, M is not an abelian group.

Example 8: consider $\left(Z,{ }^{*}\right)$ where * is a binary operation defined by $a^{*} b=a+b-$ ab. Show that ($Z,{ }^{*}$) is a monoid. Is ($Z,{ }^{*}$) a group?. Justify your answer.

Solution: Given that $\left(Z,{ }^{*}\right)$ where * is a binary operation defined by $a^{*} b=a+b-a b$.

1. Closure: $a^{*} b=a+b-a b \in Z, \forall a, b \in Z$.
\therefore closure property holds
2. Associativity:

$$
\begin{aligned}
(a * b)^{*} c & =(a+b-a b)^{*} c \\
& =(a+b-a b)+c-(a+b-a b) c \\
& =a+b+c-a b-a c-b c+a b c \\
a^{*}\left(b^{*} c\right) & =a^{*}(b+c-b c) \\
& =a+(b+c-b c)-a(b+c-b c) \\
& =a+b+c-b c-a b-a c+a b c
\end{aligned}
$$

$\therefore \quad\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)=a+b+c-b c-a b-a c+a b c \quad \forall a, b, c \in Z$
Therefore associative law holds.
3. identity: $0 \in Z$ is the identity element as $a * 0=a+0-a .0=0+a-0 . a=0 * a=a$ Therefore identity property holds and 0 as the identity element.

Therefore ($Z,{ }^{*}$) is Monoid.
4. inverse: for $3 \in Z$, there is no $x \in Z$ such that

$$
3+x-3 x=0 \Rightarrow 3+x=3 x \Rightarrow x=3 / 2 \notin Z
$$

Inverse does not exists, so $\left(Z,{ }^{*}\right)$ is not a Group.

Example 9: Let \mathbf{R} be the set of all real numbers and * is a binary

 operation defined by $a^{*} b=a+b+a b$. Show that $\left(R,{ }^{*}\right)$ is a monoid. Is ($R,{ }^{*}$) a group?. Justify your answer.Solution: Given that ($\mathrm{R},{ }^{*}$) where * is a binary operation defined by a * $\mathrm{b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$.

1. Closure: $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+\mathrm{ab} \in \mathrm{R}, \forall \mathrm{a}, \mathrm{b} \in \mathbf{R} . \quad \therefore$ closure property holds
2. Associativity:

$$
\begin{aligned}
\left(a^{*} b\right)^{*} c & =(a+b+a b)^{*} c \\
& =(a+b+a b)+c+(a+b+a b) c \\
& =a+b+c+a b+a c+b c+a b c \\
a^{*}\left(b^{*} c\right) & =a^{*}(b+c+b c) \\
& =a+(b+c+b c)+a(b+c+b c) \\
& =a+b+c+b c+a b+a c+a b c
\end{aligned}
$$

$\therefore \quad\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)=a+b+c+b c+a b+a c+a b c \quad \forall a, b, c \in R$
Therefore associative law holds.
3. identity: $0 \in R$ is the identity element as $a * 0=a+0+a .0=0+a+0 . a=0 * a=a$ Therefore identity property holds and 0 as the identity element.

Therefore ($\mathrm{R},{ }^{*}$) is Monoid.
4. inverse: for $a \in R$, there is $x \in R$ such that

$$
a+x+3 a=0 \Rightarrow a+x=-a x \Rightarrow x=-a / a+1 \in R .
$$

Inverse exists, so (Revaldispargroupprao - DM - III UNIT -

Theorem

In a Group (G, *) the following properties hold good

1. Identity element is unique.
2. Inverse of an element is unique.
3. Cancellation laws hold good

$$
\begin{array}{ll}
a * b=a * c \Rightarrow b=c & \text { (left cancellation law) } \\
a * c=b * c \Rightarrow a=b & \text { (Right cancellation law) }
\end{array}
$$

4. $\left(a^{*} b\right)^{-1}=b^{-1 *} a^{-1}$

In a group, the identity element is its own inverse.

Theorem 1: In a group ($G,{ }^{*}$), Prove that the identity element is unique.

Proof: Let e_{1} and e_{2} are two identity elements in G.
Now, $e_{1}{ }^{*} e_{2}=e_{1} \quad \ldots$ (1) (since e_{2} is the identity)
Again, $e_{1} * e_{2}=e_{2} \quad \ldots$ (2) (since e_{1} is the identity)
From (1) and (2), we have $e_{1}=e_{2}$
\therefore Identity element in a group is unique.
Theorem 2: In a group ($\mathrm{G},{ }^{*}$), Prove that the inverse of any element is unique.
Proof: Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$ and e is the identity in G .
Let us suppose, Both band care inverse elements of a.
Now, a * $b=e \quad$...(1) (Since, b is inverse of $a)$
Again, a * $c=e \quad . .(2) \quad$ (Since, c is also inverse of $a)$
From (1) and (2), we have

$$
a^{*} b=a^{*} c
$$

$\Rightarrow \quad b=c \quad$ (By left cancellation law)
In a group, the inverse of any element is unique:

Theorem 3:In a group $\left(G,{ }^{*}\right)$, Prove that $\left(a^{*} b\right)^{-1}=b^{-1}{ }^{*} a^{-1}$ for all $a, b \in G$.
Proof: Consider, ($\mathbf{a}^{*} \mathbf{b}$) * $\left(b^{-1 *} a^{-1}\right)$

$$
\begin{array}{ll}
=\left(a^{*}\left(b^{*} b^{-1}\right)^{*} a^{-1}\right) & \\
=\left(a^{*} e^{*} a^{-1}\right) & \\
=\left(a^{*} a^{-1}\right) & \text { (By associative property). } \\
=e & \\
=e & \text { (By ince, e is idenserse property) }
\end{array}
$$

Similarly, we can show that $\left(b^{-1}{ }^{*} a^{-1}\right)$ * $\left(a^{*} b\right)=e$
Hence, $\left(a^{*} b\right)^{-1}=b^{-1 *} a^{-1}$.
If $\left(G,{ }^{*}\right)$ is a group and $a \in G$ such that $a * a=a$, Show That $a=e$, where e is identity element in G .
-Proof: Given that, \mathbf{a} * $\mathbf{a}=\mathbf{a}$

$$
\begin{array}{ll}
\Rightarrow a^{*} a=a^{*} e & (\text { Since, } e \text { is identity in } G) \\
\Rightarrow & a=e
\end{array} \quad \text { (By left cancellation law) }
$$

-Hence, the result follows.

If every element of a group is its own inverse, then show that the group must be abelian .

Proof: Let (G, *) be a group.
Let a and b are any two elements of G.
Consider the identity,

$$
\left(a^{*} b\right)^{-1}=b^{-1 *} a^{-1}
$$

$\Rightarrow(a * b)=b^{*} a($ Since each element of G is its own inverse)
Hence, G is abelian.
Note: $\mathbf{a}^{2}=\mathbf{a}$ * \mathbf{a}

$$
\mathbf{a}^{3}=\mathbf{a}^{*} \mathbf{a}^{*} \mathbf{a} \text { etc. }
$$

Example: In a group (G, *), if (a * b) $)^{2}=\mathbf{a}^{2}{ }^{*} \mathbf{b}^{2} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$. Show that

 G is abelian group.Proof: Given that $\left(a^{*} b\right)^{2}=a^{2}{ }^{2}{ }^{2}$

$$
\begin{aligned}
& \left.\Rightarrow\left(a^{*} b\right)^{*}\left(a^{*} b\right)=(a)^{*} a\right)^{*}\left(b^{*} b\right) \\
& \quad \Rightarrow a *(b * a)^{*} b=a a^{*}(a * b) * b \quad \text { (By associative law) } \\
& \Rightarrow(b * a)^{*} b=(a * b) * b \quad \text { (By left cancellation law) } \\
& \Rightarrow(b * a)=(a * b) \quad \text { (By right cancellation law) }
\end{aligned}
$$

Hence, G is abelian group.

Example: Show that $G=\{1,-1\}$ is an abelian group under multiplication.

Solution: The composition table of $\mathbf{G} |$| . | 1 | -1 |
| ---: | ---: | ---: |
| 1 | 1 | -1 |
| -1 | -1 | 1 |

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
2. Associativity: The elements of G are real numbers, and we know that multiplication of real numbers is associative.
3. Identity : Here, 1 is the identity element and $1 \in G$.
4. Inverse: From the composition table, we see that the inverse elements of 1 and -1 are 1 and -1 respectively.

Hence, G is a group w.r.t multiplication.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence ${ }_{2}$ G is an abelian group watu multiplicationynit

Example: Show that $G=\left\{1, \omega, \omega^{2}\right\}$ is an abelian group under multiplication.

 Where $1, \omega, \omega^{2}$ are cube roots of unity.Solution: The composition table of G is

.	1	ω	ω^{2}
1	1	ω	ω^{2}
ω	ω	ω^{2}	1
ω^{2}	ω^{2}	1	ω

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
2. Associativity: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
3. Identity: Here, 1 is the identity element and $1 \in G$.
4. Inverse: From the composition table, we see that the inverse elements of 1ω, ω^{2} are $1, \omega^{2}, \omega$ respectively.

Hence, G is a group w.r.t multiplication.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, \mathbf{G} is an abelian group w.rertu multiplication.

Example: Show that $G=\{1,-1, i,-i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

-	$\mathbf{1}$	$\mathbf{- 1}$	\mathbf{i}	$-\mathbf{i}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{- 1}$	\mathbf{i}	$\mathbf{- i}$
$\mathbf{- 1}$	$\mathbf{- 1}$	$\mathbf{1}$	$\mathbf{- i}$	\mathbf{i}
\mathbf{i}	\mathbf{i}	$\mathbf{- i}$	$\mathbf{- 1}$	$\mathbf{1}$
$\mathbf{- i}$	$\mathbf{- i}$	\mathbf{i}	$\mathbf{1}$	$\mathbf{- 1}$

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
2. Associativity: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
3. Identity: Here, 1 is the identity element and $1 \in G$.
4. Inverse: From the composition table, we see that the inverse elements of

1-1, $i,-i$ are 1,-1, $-i, i$ respectively.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.
Modulo systems
Addition modulo $\mathrm{m}\left({ }^{(} \mathrm{m}\right)$
let m is a positive integer. For any two positive integers \mathbf{a} and \mathbf{b}
$a+{ }_{\mathbf{m}} \mathbf{b}=\mathbf{a}+\mathbf{b}$ if $\mathbf{a}+\mathbf{b}<\mathbf{m}$
$a+{ }_{m} b=r$ if $a+b \geq m$ where r is the remainder obtained by dividing (a+b) with m.
Multiplication modulo $p\left(X_{p}\right)$
let p is a positive integer. For any two positive integers a and b
$a X_{p} b=a b \quad$ if $\mathbf{a b}<\mathbf{p}$$a X_{p} b=r$ if $a b \geq p$ where r is the remainder obtained by dividing (ab) with p.
Ex. $3 X_{5} 4=2, \quad 5 X_{5} 4=0, \quad 2 X_{5} 2=4$

Example: The set $G=\{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6 .

Solution: The composition table of G is

$+_{6}$	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under ${ }_{6}$.
2. Associativity: The binary operation $+_{6}$ is associative in G.
for ex. $\left(2+_{6} 3\right)+_{6} 4=5+_{6} \mathbf{4}=\mathbf{3}$ and $2+_{6}\left(3+_{6} 4\right)=2+_{6} \mathbf{1}=\mathbf{3}$
3. Identity : Here, The first row of the table coincides with the top row. The element heading that row , i.e., 0 is the identity element.
4. Inverse: From the composition table, we see that the inverse elements of $\mathbf{0}$,

1,2,3,4.5 are $0,5,4,3,2,1$ respectively.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation ${ }_{+}$is commutative.

Hence, ($\mathbf{G},+_{6}$) is an abeliangroup sreenivasarao - DM - IIU UNIT- $^{\text {In }}$

The set $G=\{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7 .

Solution: The composition table of G is

x_{7}	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under \times_{7}.
2. Associativity: The binary operation x_{7} is associative in G.

$$
\text { for ex. }\left(2 \times_{7} 3\right) \times_{7} 4=6 \times_{7} 4=3 \text { and } 2 \times_{7}\left(3 \times_{7} 4\right)=2 \times_{7} 5=3
$$

3. Identity: Here, The first row of the table coincides with the top row. The element heading that row , i.e., 1 is the identity element.
4. Inverse: From the composition table, we see that the inverse elements of $\mathbf{1}$, 2, 3, 4.5 ,6 are 1, 4, 5, 2, 5, 6 respectively.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation \times_{7} is commutative.

Hence, (G, x_{7}) is an abelian group.

More on finite groups

In a group with 2 elements, each element is its own inverse
In a group of even order there will be at least one element (other than identity element) which is its own inverse

The set $G=\{0,1,2,3,4, \ldots . . \mathrm{m}-1\}$ is a group with respect to addition modulo m.

The set $G=\{1,2,3,4, \ldots . \mathrm{p}-1\}$ is a group with respect to multiplication modulo p, where p is a prime number.
Order of an element of a group:
Let ($G,{ }^{\text {* }}$) be a group. Let ' a ' be an element of G. The smallest integer \mathbf{n} such that $\mathbf{a}^{\mathrm{n}}=\mathrm{e}$ is called order of ' a '. If no such number exists then the order is infinite.
3.2.5. Sub groups

A non empty sub set H of a group ($G,,^{*}$) is a sub group of G, if $\left(H,{ }^{*}\right)$ is group.
Note: For any group $\left\{\mathrm{G},{ }^{*}\right\},\left\{\mathrm{e},{ }^{*}\right\}$ and ($G,{ }^{*}$) are trivial sub groups.

Example 1: $G=\{1,-1, i,-i\}$ is a group w.r.t multiplication.

$$
\begin{aligned}
& H_{1}=\{1,-1\} \text { is a subgroup of } G . \\
& H_{2}=\{1\} \text { is a trivial subgroup of } G .
\end{aligned}
$$

Example 2:($\mathbf{Z},+$) and ($\mathbf{Q},+$) are sub groups of the group ($\mathbf{R}+$).

Theorem: A non empty sub set H of a group $\left(\mathrm{G},{ }^{*}\right)$ is a sub group of G iff
i) $\quad \mathbf{a} * \mathbf{b} \in \mathbf{H} \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{H}$
ii) $\quad \mathbf{a}^{-1} \in \mathrm{H} \quad \forall \mathrm{a} \in \mathrm{H}$

Proof:
Suppose H is a subgroup of G, then H must be closed with respect to composition * in G, i.e. $a \in H, b \in H \Rightarrow a * b \in H$
Let $a \in H$ and a^{-1} be the inverse of a in G. Then the inverse of a in H is also a^{-1}.
As H itself is a group, each element of H will possess inverse in it,
i.e. $\mathbf{a} \in \mathrm{H} \Rightarrow \mathbf{a}^{-1} \in \mathbf{H}$.

Thus the condition is necessary.
Now let us examine the sufficiency of the condition.
(i) Closure Axiom: $\mathrm{a} \in \mathrm{H}, \mathrm{b} \in \mathrm{H} \Rightarrow \mathrm{a} * \mathrm{~b} \in \mathrm{H}$. Hence the closure axiom is satisfied with respect to the operation *.
(ii) Associative Axiom: Since the elements of H are also the elements of G , the composition is associative in H also.
(iii) Existence of Identity: The identity of the subgroup is the same as the identity of the group because $\mathbf{a} \in \mathrm{H}, \mathrm{a}^{-1} \in \mathrm{H} \Rightarrow \mathbf{a}^{*} \mathrm{a}^{-1} \in \mathrm{H} \Rightarrow \mathbf{e} \in \mathrm{H}$. The identity e is an element of H .
(iv) Existence of Inverse: Since $\mathbf{a} \in \mathrm{H} \Rightarrow \mathrm{a}^{-1} \in \mathrm{H}, \forall \mathrm{a} \in \mathrm{H}$. Therefore each element of H possesses an inverse.

The H itself is a group for the composition * in G .
Hence H is a subgroup.

Theorem: A necessary and sufficient condition for a non empty subset H of a group (G, *) to be a sub group is that $a \in H, b \in H \Rightarrow a^{*} b^{-1} \in H$.

Proof:

Case 1: Let (G, *) be a group and H is a subgroup of G

$$
\text { Let } \begin{array}{rlr}
\mathrm{a}, \mathrm{~b} & \in \mathbf{H} & \Rightarrow \mathbf{b}^{-1} \in \mathbf{H} \\
& \Rightarrow \mathbf{a}^{*} \mathbf{b}^{-1} \in \mathbf{H} . & \text { (since } \mathbf{H} \text { is is a group) } \\
\text { (By closure property in } \mathbf{H} \text {) }
\end{array}
$$

Case 2: Let H be a non empty set of a group ($\mathrm{G},{ }^{*}$).
Let $\quad \mathbf{a}^{*} \mathbf{b}^{-1} \in \mathbf{H} \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{H}$
Now, $\quad \mathbf{a}^{*} \mathbf{a}^{-1} \in \mathbf{H} \quad($ Taking $\mathbf{b}=\mathbf{a})$
$\Rightarrow \mathbf{e} \in \mathrm{H} \quad$ i.e., identity exists in H .
Now, $e \in H, a \in H \Rightarrow e^{*} a^{-1} \in H$

$$
\Rightarrow \quad \mathbf{a}^{-1} \in \mathbf{H}
$$

\therefore Each element of H has inverse in H .

Further, $\mathbf{a} \in \mathbf{H}, \mathbf{b} \in \mathbf{H} \Rightarrow \mathbf{a} \in \mathbf{H}, \mathbf{b}^{-1} \in \mathbf{H}$

$$
\begin{aligned}
& \Rightarrow \mathbf{a}^{*}\left(\mathbf{b}^{-1}\right)^{-1} \in \mathbf{H} . \\
& \Rightarrow \mathbf{a} \mathbf{a}^{*} \mathbf{b} \in \mathbf{H} .
\end{aligned}
$$

$\therefore \mathrm{H}$ is closed w.r.t *
Finally, Let $\mathbf{a}, \mathrm{b}, \mathbf{c} \in \mathbf{H}$

$$
\begin{aligned}
& \Rightarrow a, b, c \in G(\text { since } H \subseteq G) \\
& \Rightarrow\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right) \\
& \therefore \text { * is associative in } H
\end{aligned}
$$

Hence, H is a subgroup of G .

Example: Show that the intersection of two sub groups of a group G is again a sub group of G.

Proof:

Let ($G,{ }^{*}$) be a group.
Let H_{1} and H_{2} are two sub groups of G.
Let $a, b \in H_{1} \cap H_{2}$.
Now, $a, b \in H_{1} \Rightarrow a{ }^{*} b^{-1} \in H_{1} \quad$ (Since, H_{1} is a subgroup of G)
again, $a, b \in H_{2} \Rightarrow a^{*} b^{-1} \in H_{2} \quad$ (Since, H_{2} is a subgroup of G)
$\therefore \mathbf{a}^{*} \mathbf{b}^{-1} \in \mathbf{H}_{1} \cap \mathbf{H}_{2}$.
Hence, $H_{1} \cap H_{2}$ is a subgroup of G.

Example: Show that the union of two sub groups of a group G need not be a sub group of G.

Proof:
Let G be an additive group of integers.
Let $H_{1}=\{0, \pm 2, \pm 4, \pm 6, \pm 8, \ldots .$.
and $H_{2}=\{0, \pm 3, \pm 6, \pm 9, \pm 12, \ldots \ldots\}$
Here, H_{1} and H_{2} are groups w.r.t addition.
Further, H_{1} and H_{2} are subsets of G .
$\therefore H_{1}$ and H_{2} are sub groups of G.
$H_{1} \cup H_{2}=\{0, \pm 2, \pm 3, \pm 4, \pm 6, \ldots .$.
Here, $H_{1} \cup H_{2}$ is not closed w.r.t addition.
For ex. 2, 3 $\in \mathbf{G}$
But, $2+3=5$ and 5 does not belongs to $H_{1} \cup H_{2}$.
Hence, $H_{1} \cup H_{2}$ is not a sub group of G.

3.2.6. Homomorphism and Isomorphism

Homomorphism :

Consider the groups ($G,{ }^{*}$) and $\left(G^{1}, \oplus\right)$. A function $f: G \rightarrow G^{1}$ is called a homomorphism if $f\left(a^{*} b\right)=f(a) \oplus f(b)$

Isomorphism:
If a homomorphism $f: G \rightarrow G^{1}$ is a bijection then f is called isomorphism between G and \mathbf{G}^{1}. Then we write $\mathbf{G} \equiv \mathbf{G}^{1}$.

Example: Let \mathbf{R} be a group of all real numbers under addition and \mathbf{R}^{+}be a group of all positive real numbers under multiplication. Show that the mapping $f: R \rightarrow R^{+}$defined by $f(x)=2^{x}$ for all $x \in R$ is an isomorphism.

Solution: First, let us show that f is a homomorphism.
Let $\mathbf{a}, \mathrm{b} \in \mathbf{R}$.
Now, $f(a+b)=2^{a+b}=2^{a} 2^{b}=f(a) . f(b)$
$\therefore \mathrm{f}$ is an homomorphism.
Next, let us prove that \mathbf{f} is a Bijection.
For any $a, b \in R$, Let, $f(a)=f(b)$

$$
\begin{aligned}
& \Rightarrow 2^{\mathrm{a}}=2^{\mathrm{b}} \\
& \Rightarrow \mathrm{a}=\mathrm{b} \quad \therefore \mathrm{f} \text { is one.to-one. }
\end{aligned}
$$

Next, take any $\mathbf{c} \in \mathbf{R}^{+}$.
Then $\log _{2} c \in R$ and $f\left(\log _{2} c\right)=2^{\log 2 c}=c$.
\Rightarrow Every element in R^{+}has a pre image in R. i.e., f is onto.
$\therefore \mathrm{f}$ is a bijection.
Hence, f is an isomorphism.

Example: Let \mathbf{R} be a group of all real numbers under addition and \mathbf{R}^{+}be a group of all positive real numbers under multiplication. Show that the mapping $f: R^{+} \rightarrow R$ defined by $f(x)=\log _{10} x$ for all $x \in R$ is an isomorphism.

Solution: First, let us show that f is a homomorphism.
Let $\mathbf{a}, \mathrm{b} \in \mathbf{R}^{+}$.
Now, $f(a . b)=\log _{10}(a . b)$

$$
\begin{aligned}
& =\log _{10} a+\log _{10} b \\
& =f(a)+f(b)
\end{aligned}
$$

$\therefore \mathrm{f}$ is an homomorphism.
Next, let us prove that f is a Bijection
For any $a, b \in R^{+}$, Let, $f(a)=f(b)$

$$
\begin{aligned}
& \Rightarrow \log _{10} a=\log _{10} b \\
& \Rightarrow \mathbf{a}=\mathbf{b}
\end{aligned}
$$

$\therefore \mathbf{f}$ is one.to-one.
Next, take any $\mathbf{c} \in \mathrm{R}$.
Then $10^{c} \in R$ and $f\left(10^{c}\right)=\log _{10} 10^{c}=c$.
\Rightarrow Every element in \mathbf{R} has a pre image in \mathbf{R}^{+}.
i.e., f is onto.
$\therefore \mathrm{f}$ is a bijection.
Hence, f is an isomorphism.

Theorem: Consider the groups $\left(G_{1},{ }^{*}\right)$ and $\left(G_{2}, \oplus\right)$ with identity elements e_{1} and e_{2} respectively. If $f: G_{1} \rightarrow G_{2}$ is a group homomorphism, then prove that
a) $f\left(e_{1}\right)=e_{2}$
b) $f\left(a^{-1}\right)=[f(a)]^{-1}$
c) If H_{1} is a sub group of G_{1} and $H_{2}=f\left(H_{1}\right)$, then H_{2} is a sub group of G_{2}.
d) If f is an isomorphism from G_{1} onto G_{2}, then f^{-1} is an isomorphism from G_{2} onto G_{1}.
a) $f\left(e_{1}\right)=e_{2}$

Proof: we have in $G_{2}, \quad e_{2} \oplus f\left(e_{1}\right)=f\left(e_{1}\right) \quad$ (since, e_{2} is identity in G_{2})
$=f\left(e_{1} * e_{1}\right)$ (since, e_{1} is identity in $\left.G_{1}\right)$
$=f\left(e_{1}\right) \oplus f\left(e_{1}\right)$ (since f is a homomorphism)
$e_{2}=f\left(e_{1}\right) \quad$ (By right cancellation law)
b) $f\left(a^{-1}\right)=[f(a)]^{-1}$

Proof: For any $\mathbf{a} \in \mathrm{G}_{1}$, we have

$$
f(a) \oplus f\left(a^{-1}\right)=f\left(a^{*} a^{-1}\right)=f\left(e_{1}\right)=e_{2}
$$

and

$$
f\left(a^{-1}\right) \oplus f(a)=f\left(a^{-1 *} a\right)=f\left(e_{1}\right)=e_{2}
$$

$\therefore f\left(a^{-1}\right)$ is the inverse of $f(a)$ in G_{2}

$$
\text { i.e., }[f(a)]^{-1}=f\left(a^{-1}\right)
$$

c) If H_{1} is a sub group of G_{1} and $H_{2}=f\left(H_{1}\right)$, then H_{2} is a sub group of G_{2}.

Proof: $H_{2}=f\left(H_{1}\right)$ is the image of H_{1} under f; this is a subset of G_{2}.
Let $x, y \in H_{2}$. Then $x=f(a), y=f(b)$ for some $a, b \in H_{1}$
Since, H_{1} is a subgroup of G_{1}, we have $a^{*} b^{-1} \in H_{1}$.
Consequently, $x \oplus y^{-1}=f(a) \oplus[f(b)]^{-1}$

$$
\begin{aligned}
& =f(a) \oplus f\left(b^{-1}\right) \\
& =f\left(a^{*} b^{-1}\right) \in f\left(H_{1}\right)=H_{2}
\end{aligned}
$$

Hence, H_{2} is a subgroup of G_{2}.
d) If f is an isomorphism from G_{1} onto G_{2}, then f^{-1} is an isomorphism from G_{2} onto G_{1}.

Proof: Since $f: G_{1} \rightarrow G_{2}$ is an isomorphism, f is a bijection.
$\therefore \mathrm{f}^{-1}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{1}$ exists and is a bijection.
Let $x, y \in G_{2}$. Then $x \oplus y \in G_{2}$ and there exists $a, b \in G_{1}$ such that $x=f(a)$ and $y=f(b)$.
$\therefore \mathrm{f}^{-1}(\mathrm{x} \oplus \mathrm{y})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{a}) \oplus \mathrm{f}(\mathrm{b}))$

$$
\begin{aligned}
& =f^{-1}\left(f\left(a^{*} b\right)\right) \\
& =a^{*} b \\
& =f^{-1}(x)^{*} f^{-1}(y)
\end{aligned}
$$

This shows that $f^{-1}: G_{2} \rightarrow G_{1}$ is an homomorphism as well.
$\therefore \mathbf{f}^{-1}$ is an isomorphism.

Example: Prove that every sub group of an abelian group is abelian.

Solution: Let ($G,{ }^{*}$) be a group and H is a sub group of G.
Let $a, b \in H \Rightarrow a, b \in G \quad$ (Since H is a subgroup of G)
$\Rightarrow a{ }^{*} b=b^{*} a \quad$ (Since G is an abelian group)
Hence, H is also abelian.

UNIT-I
Q. What is Discrete Mathematics?

Ans: Discrete mathematics is the part of mathematics study of discrete objects.
Discrete means "distinct or unconnected elements". Discrete object is something that is countable.
Examples: (1) The Integers or natural numbers.
(2) The rational numbers
(3) Finite sets
(4) Functions from $\{1,2, \ldots, n\} \rightarrow\{0,1\}$
(5) People, chairs, tables, balls,....
Q. Why study Discrete Mathematics?
\rightarrow (1) It develops your mathematical thinking.
(2) Improves your problem solving ability:
(3) Foundation for many courses in Computer science/Eng.

- Data structures, algorithms (Graph, Computability).
- Artificial Inteligence $\left(\log _{i} c\right.$, graph, Automata)
- Databases (Relations, logic)
- Computer N/W's (Graphs).
- Compiler design; formal languages, automata theory, computer security, and operating systems.
(4) Foundation for a new discipline: Formal method for CS) Eng.
- proving correctness of programs.
- proving properties of S/W systems: Deadlock-free.
- Verifying protocols: ISDN protocol, security protocol.
- Finding bugs in Mp's. (used by Intel, IBM, motoroLa)
- Verifying configurations of N/W systems - Firewalls.

The phrase Γ The area of logic that deals with propositions. Composed of two words:
also called propositional
proposition
Q. What is logic?
\rightarrow Logic is the stidy of correct reasoning.
It helps' us to 'understand and reason about different mathematical statements. The Rules of logic gives precise meaning to " stats.

- With rules of logic, we would be able to think about mathematical statements and finally we would be able to prove or disprove those mathematical statements precisely.
use of $\log _{2}$ ic: () In Mathematics
\rightarrow to prove theorems.
(2) In CS: to prove that programs do what they are supposed to do.
Logic focuses on the relationship among statements.
(1)

For example: My watch is digital
All digital devices run on batteries.
Therefore, my watch runs on batteries.
Note that Logic is not concerned with the truth of the first two statements. But if they were true, then the inference is true.
(2) For every positive integer n, the sum of positive integers not exceeding n is $\frac{n(n+1)}{2}$.
purpose of logic is to construct Valid arguments (or proofs). once we prove a maftiematical statement is TRUE then we call it as a Theorem. and this is the basis of whole mathematics. \mathbb{C} purpose of -logic is to distinguish b / ω valid and Invalid mithemeticalavguments.

Covers
Major goal of this subject: how to cenderstand s how to construet Correct mathematical arguments.
Q. What is proposition?
\rightarrow A proposition is a declarative sentence that is either true or false, but not both. The basic building blocks of logic. For example, "My name is Ramu" is a declarative statement. but "What is your name?" is not a declarative statement.
Examples:- (1) Delhi is the Capital of India.
(2) $1+1=2$
(3) 5 is a prime number.
(4) $2+2=3$
propositions $1,2,3$ are true, where as 4 is false.
Sentences which are not propositions:
(1) $x+y=z$
(2) How beautiful are you? (5) Do your homework.
(3) Read this carefully.
(6) $x+2=3$
(7) what time is $l t$?
propositional (Statement) Variable:-
A variable that represents a proposition. Denoted by p, q, r, s. The truth or falsity of a proposition is called its truth-value. These two values 'true' and 'false' are denoted by the symbols T and Frespectively. Sometimes these are also denoted by the sym $(z i)$ is i and 0 respectively.
Truth value: True or False.
Compound proposition: (Connectives)
A. Compound proposition are formed by combining more than one propositions using logical operators. (or)
A proposition constructed by combining propositions using logical operators.
\rightarrow operators used to combine propositions. compound proposition is also named as connectives.
Example: (1) $\frac{\text { Rama is a buy }}{\text { Trondion 1 }} \underset{\text { droning two proportion 2 }}{\text { anta is a give. }}$
propositions with logical connective
Q. Why do we need Compound propositions?

Example (2): $P:$ Einstein is a genius.
Q: It. is not the case that Einstein is a genius. Modifying the statement using negation.
There are Five basic connectives namely negation, Conjunction, disjunction, conditional and biconditional, exclusive-or.
(1) Negation:- Let P be a proposition. The negation of P, denoted by $7 p$, is the statement "It is not the case that p ". The proposition $7 P$ in read as "not P ". [also named as A]
Example (1): P : Einstein is a genius.
7P: It is not the case that Einstein is a genius. (or)
It is false that Einstein is a genius. (or)
Einstein is not a genius.
Example 2:-q.F ind the negation the proposition
"Hyderabad is a city" and express this in Simple English.
A: The negation is "It is not the case that Hyderabad is a city.
(or)
Hyderabad in not a city.
Truth table:

P	$T P$
T	F
F	T

Truth table: a table displaying the truth values of propositions.

Types of connectives (r) compound propositions:-

1) Negation (not)
2) Conjunction, (and)
3) Disjunction (or)
(a) Exeluetive-or (\oplus)
(4) Conditional (if. A Then)
(5) Biconditional (if and only if)
(2) Conjunction:-

Let p and q be propositions. The conjunction of p and q, denoted by $p \wedge q$; is the proposition of P and q.
The conjunction $P \wedge Q$ is true when both P and q are true and is false otherwise.
Truth Table:

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Note: The word "but" Sometimes is used instead of "and" in conjunction.
Example: (1) The sun is shining, but it is raining. is another way of saying. "The sun is shining and it is raining".
(2) p : Jack went up the hill
q: Jill went up the hill.
$p \wedge q:$ Jack and Jill Went up the hill.
(3) Disjunction:- Let p and q be propositions. The Disjunction of p and q, denoted by $p \vee q$, in the proposition " p or q ".
The disJunction $P \vee Q$ is false when both p and q are false and ${ }^{\text {is }}$ true otherwise. Disjunction is also known as
Truth Table:-
A disjunction is true when at least

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Examples: (I) I shall goto Market or Cinema.
(2) There is something wrong with the bulb or wiring. (3) It is raining or it in cold.

(46) Exclusive-or :-

Let P and q be propositions. The exclusive-or of p and q, denoted by $P \oplus Q$, is the proposition that is true when exactly one of P and q is true and is false otherwise.
Truth Table:-

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

(26) Conditional or If.. then Statement:- (Implication) Let p and q be propositions. The conditional statement $p \rightarrow q$ is the proposition "if p, then q ".
The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise.
In the conditional statement $p \rightarrow q, p$ is called the hypothesis (or antecedent or premise) and q is Called. Conclusion (or consequence):
The Truth table for the conditional statement $p \rightarrow q$:-

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

The statement $p \rightarrow q$ is called a conditional statement because $p \rightarrow q$ asserts that q is true on the condition that p holds. The conditional statement is also called an implication.

The proposition $P \rightarrow q$ may be expressed as:
(土)" if P, then q "
(2) "if $p, q^{\prime \prime}$
(3). " P is sufficient for q "
(4) " q if p "
(5) "q when p "
(6) "a necessary condition for p is q "
(7) "q unless $7 p$ "
(8) "p implies q "
(9) " p only if q "
(10) "a sufficient condition for q is p "
(II) "q whenever P "
(12) " q is necessary for p "
(13) "V follows from P "

Example: (1) If triangle $A B C$ is equivalent, then it is isolcales.
(2) P : it is hot

$$
q: 2+3=5
$$

$p \rightarrow q$: If it is hot, then $2+3=5$.
(3) If you get 100% on the final, then you will get an A.
(4) If it is sunny tomorrow, you may go swimming.
Q. Write the following statements in symbolic form:
(a) If either Jerry takes Calculus or ken takes sociology, then Larry will take English.
(b) The crop will be destroyed if there is a flood.

Ans: (a) we denote the statement as
J: Jerry takes Calculus
k: ken takes sociology
L: Larry takes English.
These stats $C a n$ be syonbolized as (JVK) $\rightarrow L$
(b) C : The crop will be destroyed
F : There is a Flood.
The statement can be symbolized as: $F \rightarrow C$

There are three related conditional statements.

Equivalent statement:- when two Compound statements alevays have the same truest value is called equivalent statement.
(4) Implication and its Contrapositive are equivalent.
(b) Converse and the inverse are also equivalent.
(c) Neither converse nor inverse is not equivalent to Implication.

Q(1): State (what are) the Contrapositive, Converse and inverse of the conditional statement.
"If the home team wins, then it it icon
(1) Contrapositive: $v p$ if it is raining, then the home team wins".
"If the home team does not win, then it is not raining".
(2) Converse: $q \rightarrow p$
"If the home team wins, then it is raining".
(3) Inverse :- $\rightarrow p \rightarrow(7 q)$

If it is not raining, then'the home team does not Win".
Q2. If triangle $A B C$ is a right angle, then $|A B|^{2}+|B C|^{2}=|A C|^{2}$.
(5) Biconditional statement:-

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ (or) $p \rightleftarrows q$, read as " p if and only if q " or " p if q ". The statement $p \leftrightarrow q$ is true whenever both p and q have the same truth values and is false otherwise. It is also called bi-implication.
$p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \wedge(q \rightarrow p)$.
Truth table:-

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

The proposition $P \leftrightarrow q$ may be expressed as:
a) "p if and only if q "
b) " p if q "
e) "if p then q, and conversely"
d) "P is necessary and sufficient for q "

Example:-Let $P:$ You can take the flight and
q : You buy a ticket then $p \leftrightarrow q$ is the statement "You can take the flight if and only if you buy a ticket".

Well-formed formula (eff):-

A statement formula is not a statement; However, a Statement can be obtained from it by replacing the variables by statements.
A Statement formula is an expression which is a String Consisting of variables, parentheses, and connective symbols. Not every string of these symbds is a formula. We shall now give a recursive definition of a statement formula, often called a well-formed formula.
A well-formed formula can be generated by the following rules:
(1) A statement variable standing alone is a if.
(2) If p is a cf, then $7 p$ is a $\omega f f$.
(3) If p and q are $\omega f f^{\prime} s$, then $(p \wedge q),(p \vee q),(p \rightarrow q)$, ($P \leftrightarrow q$) are $\omega f f^{\prime} s$.
(4) A string of symbols containing the statement variables, Correctives, and parenthesis is a cf, iff it can be obtained by finitely many applications of the rules 1,2, and 3 .
The following are $\omega f f$'s: $((\neg p) \vee q), \neg(p \wedge q), \neg(p \vee q),(p \rightarrow(p \vee q)),((p \wedge q) \vee \gamma)$

$$
(p \rightarrow(q \rightarrow r)),((p \rightarrow q) \wedge(q \rightarrow \gamma)) \rightleftarrows(p \rightarrow \gamma) .
$$

The following are not $\omega f f^{\prime} s$:
(1) $7 P \wedge q$. obviously P and q are wff's. A whf would be either $(7 p \wedge q)$ or $7(p \wedge q)$
(2) $(p \rightarrow q) \rightarrow(\wedge q)$. This is not a whf.
(3) $(P \rightarrow q$. parenthesis is missing.
precedence of logical operators:-
Examples:-
$\neg p \wedge q$ is the conjunction of $7 p$ and d, ie ($\neg p) \wedge q$.
$p \wedge q \vee \gamma$ means $(p \wedge q) \vee \gamma$
$p \vee q \rightarrow \gamma$ means $(p \vee q) \rightarrow \gamma$

operator	precedence
$\vec{\wedge}$	1
\hat{v}	2
\rightarrow	3
\longrightarrow	4
\longleftrightarrow	5

Construction of Truth Table:-
Q. Construct the truth table of the compound proposition $(p \vee \neg q) \rightarrow(p \wedge q)$

801: Truth table of $(p \vee \neg q) \rightarrow(p \wedge q)$

p	q	$\neg q$	$p \vee \neg q$	$p \wedge Q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T	F	T	T	T
T	F	T	T	F	F
F	T	F	F	F	T
F	F	T	T	F	F

Rows: Need a row for every possible combination of values for the atomic propositions.
Columns: Need a Column for the Compound proposition (usually at far right)

- Need a column for the truth value of each expression that occurs in the compound proposition as it is built up. - This includes the atomic propositions.
Q. How many rows are there in a tret table with n propositional variables?
Ans: With n propositional variables, we can construct 2^{n} distinct.

Applications of propositional logic:-
(1) Translating English sentences to propositional Logic.
(2) System specifications.
(3) Boolean Searches.
(4) Logic puzzles.
(5) Logic and Bit operations.
(1) Translating English Sentences:-

There are many reasons to translate English sentences into expressions involving propositional Variables and logical Connectives. In perticular, English is often ambiguous. Translating sentences into compound statements removes ambiguity.
steps: (1) Identify atomic propositions and represent Using propositional variables.
(2) Determine appropriate logical Connectives.

Example (1): Translate the following English sentences into a logical expression.
(a) You can access the Internet from campus only if you are a computer science major or you are not a freshman.
Ans: a : You can access the Internet from Campus
c : You e are a computer science major
f: You are a freshonan.
only if is one way conditional Statement.
Then the sentence can be translated to

$$
a \rightarrow(c \vee \neg f)
$$

(b) You cannot ride the rollercoaster if you are under 4 feet tall unless you are older than 16 years old.
P : you can ride the roller coaster
q: you are older than 16 years
r : you are under 4 feet tall
Then the sentence can be represented as

$$
(r \wedge \neg q) \rightarrow(\neg p)
$$

(2) System Specifications:-

Translating sentences in notual language (such as English) into logical expressions is an essential part of specifying both hardware and software systems.
system and software engineers take requirements in natural language and produce precise and unambiguous specifications that can be used as the basis for system development.
Example: (p) Express the specification "The automated reply Cannot be sent when the file system is fuel" Using logical connectives.
Sol: Let P : The automated reply can be sent
q : The file system is full.
Specification can be represented by $q \rightarrow T p$.
Consistent system specifications:- A list of propositions is Consistent if it is possible to assign truth values to the proposition variables so that each proposition is true.
Example: Determine whether these system specifications are consistent.
"The diagnostic message is stored in the buffer or it is retrans-" milted."
"The dignostic message is not stored in the buffer"
"If the diagnostic message is stored in the buffer, then it is retransmitted".
80. First, we express them using logical expressions.

Let P : The diagnostic message is stored in the buffer
q : The diagnostic message is retransmitted.
The specifications can be written as $p \vee q, 7 p$ and $p \rightarrow q$. Because we want $p \vee q$ to be true but p must be false and q must be true.
Because $p \rightarrow q$ is true when p is false and q is true. So, we Conclude that these specifications are consistent. because they are all true when p is false and q is true.
(3) Boolean Searches:-

Logical connectives are used extensively in searches of large, collections of information, such as indexes of web pages. Because these searches employ techrixies from proportional lo sic, In Boolean Searches, the connective AND is used to match records That contain both of two search terms, the connective $O R$ is used to match one or both of two search terms, and the connective NOT (sometimes writtenas AND NOT) is used to exclude a particular search term.
Example: Web page Searching. Most web Search engines support Boolean searching techniques, usually can help find web pages about perticular subjects.
For instance, using Boolean Searching to find web pages about (1) Universities in New Mexico.

We cantor for pages matching NEW AND MEXICO AND UNIVERSITIES.
(2) To find pages that deal with univertier in New mexico or Arizona. we can search for pages matching, (NEW AND MEXICO OR ARIZONA) AND UNIVERSITIES.
(3) Universities in Mexico (and not New Mexico) \rightarrow (MEXICO AND UNIVERSITIES) NOT NEW. (or)
MEXICO UNIVERSITIES JEW.
(4) Logic puzzles:-
puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic plezzles is an excellent way to practice working with the rules of logic. Computer programs designed to carry out logical reasoning often use well-known uric puzzles to illustrate their capabilities.
Example: Raymond Smullyan, An island has two kinds of inhabitants; knights, who always tell the truth, and knaves, who always lie.
You go to the island and meet A and B.

- B says The two types of A and B ?

Sol: Let p and q be the statements that A is a knight and B is a knight, respectively. So, then $I P$ represents the proposition That A is a knave and $7 \mathbb{Q}$ that B is a knave.

- If A is a knight, then P is true. Since knight tells the truth, q must also be true. Then $(p \wedge \neg q) \vee(\neg p \wedge q)$ would have to be true, but it is not. So, A is not a knight and therefore $7 P$ must be true.
- If A is a knave, then B must not be a knight since knaves always lie. So, then both $7 P$ and $7 Q$ hold since both are knaves.
(5) logic and Bit operations:-
computers represent information using bits. A bit is a symbol with two possible values, namely, O (zero) and 1 (one). bit represents a binary digit.i, e. Zeros and ones are the digits used in binary representation of numbers.
A bit can be used to represent a value, because there are two truth values, namely true and false.

True (T) - 1
false (F) - 0
A variable is called a Boolean variable if its value is either true or false. Boolean variable can be represented using a bit. computer bit operations correspond to the logical connectives. Replace true by a one and false by a zero in the truth tables for the operators Λ, V, \oplus.
$O R, A N D$, and $X O R$ for the operators V, N, and \oplus, as is done in various programming languages.

Truth table for the bit operators $O R, A N D$, and $X O R$

x	y	$x \vee y$	$x \wedge y$	$x+y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

A bit String is a sequence of zero or more bits.
The length of a string is the number of bits in the string. Example: 101010011 is a bit string of length nine.

Example: Find the bitwise OR, bitwise AND, bitwise XOR of the bit strings: 0110110110 and 1100011101 .

bitwise OR	bitwise AND	bitwise XOR
0110110110	0110110110	0110110110
110001101	1100011101	110001.1101
1110111111	0100010100	1010101011

propositional Equivalences:-
(4). Tautology:- A Compound proposition that is always true. is called "Tautology".
Example: $P \vee \neg P$

P	$7 P$	$P \vee 7 P$
T	F	T
F	T	T

(2) Contradiction:- A compound proposition that is always false is celled" contradiction".
Example: $P \wedge \neg P$

P	$7 P$	$P \wedge \neg P$
T	F	F
F	T	F

(3) Contingency: - A compound proposition that is neither a tautology nor a contradiction is called a contingency.
Example: $p \rightarrow \mathbb{Q}, p \leftrightarrow q$.

p	q	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T
T	F	F	F
F	T	T	F
F	F	T	T

Logical Equivalences:-
Compound propositions that have the same truth values in all possible cases are called "logically equivalent."
The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology.
The notation $p \equiv q$ denotes that p and q are logically egreivalent. The symbol \Leftrightarrow is sometimes used instead of \equiv to denote logical equivalence.

Logical eqreivalcuces:- Table 1

Table 2: Logical equivalences involving conditional statements.

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(q \rightarrow \neg p) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow \gamma) \equiv p \rightarrow(q \wedge \gamma) \\
& (p \rightarrow \gamma) \wedge(q \rightarrow \gamma) \equiv(p \vee q) \rightarrow \gamma \\
& (p \rightarrow q) \vee(p \rightarrow \gamma) \equiv p \rightarrow(q \vee \gamma) \\
& (p \rightarrow \gamma) \vee(q \rightarrow \gamma) \equiv(p \wedge q) \rightarrow \gamma
\end{aligned}
$$

Table 3: Logical equivalences involving biconditionals

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

Q. Show that $7(p \vee q)$ and $7 p \wedge 7 q$ are logically equivalent

$p q$	$p \vee q$	$\neg(p \vee q)$	$7 p$	$7 q$	$\neg p \vee \neg q$	
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	

$$
\therefore T(p \vee q) \equiv \neg p \wedge \neg q
$$

Rules of Inference: - proofs in mathematics are valid arguments Argument:- An argument in in propositional logic is a sequence of propositions. (or) A sequence of statements that end with a conclusion. All but the final proposition in the argument are called premises and the final proposition is called the conclusion.
An argument is valid if the truth of all its premises implies that the conclusion is true.
Valid argument:- A valid argument is a sequence of propositions $p_{1}, p_{2}, \ldots, p_{n}$ called premises, together with a proposition C called the conclusion, such that the implication $P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n} \Rightarrow C$ is a tacetology. An argument is valid if, whenever each of its premises $p_{1}, p_{2}, \ldots p_{n}$ is true, its conclusion c is also true. Each inference can be written as an implication, as (ConJunction of premises) \rightarrow Conclusion The conclusion is a valid one, if the implication is a tacetology.
\(\left.\begin{array}{l}P_{1}

P_{2}

\vdots

P_{n}\end{array}\right\}\)| sequence of |
| :--- |
| premises |

$$
\therefore C \rightarrow \text { Conclusion }
$$

An argument form in propositional logic is a sequence of compound propositions involving propositional variables. An argument form is valid if no matter which perticular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true.
Rules of inference provide the Justification of the Steps used in a proof.
[inference - is an dea or conclusion that in drown from evidence and reasoning.]
(1)

Table 1. Rules of Inference for Propositional logic Tautology Name $\frac{\text { Rule of Inference }}{P}$
$[p \wedge(p \rightarrow q)] \rightarrow q$
Modes pones (er)
$\frac{p \rightarrow q}{\therefore q}$

Law of detachment
(2) $7 q$

$$
\frac{p \rightarrow q}{\therefore \neg p}
$$

$[7 v \wedge(p \rightarrow q)] \rightarrow \neg p$
Models tollens (or)
Law of contraposition
(3) $p \rightarrow q$ $\frac{q \rightarrow \gamma}{\therefore p \rightarrow \gamma}$
(4)
$\frac{p \vee q}{}$
$\therefore p$$\quad[(p \vee q) \wedge q] \rightarrow q$

Disjunctive Syllogism

Addition
(5)

$$
\frac{p}{\therefore p \vee q}
$$

$$
p \rightarrow(p \vee q)
$$

(6) $p \wedge q$
$(p \wedge q) \rightarrow p$
$\therefore P$
ConJunction
(7) p
$[(p) \wedge(q))] \rightarrow(p \wedge q)$
Hypothetical syllogism
(or) Transitive rule

Addition

(8) $p \vee q$ Resolution $\frac{7 p \vee r}{\therefore q \vee \gamma}$

Rules of inference:-
Establish the validity of some relatively simple argument forms, called rules of inference. These rules of inference can be lesed as building blocks to construct more complicated valid argument forms.
Example:

Using this notation, the hypotheses are written in a column,
$\mathrm{P} \rightarrow \mathrm{q}$ followed by a horizontal bar, followed by line that begins with the therefore (\therefore) symbol and ends with a conclusion
Q. Check the Validity of the following argument.
(a) It is below freezing now.

Therefore, it is either below freezing or raining now.
\& Let P be the proposition "It is below freezing" and q be the proposition "It is raining now". Then this argument is of the form.
$\frac{p}{\therefore p \vee q}$ This is the addition rule.
(b) It is below freezing and raining now.

+ Let P : below freezing
q : It is raining now. Then this argument is of the
form, $\quad \frac{P A Q}{\therefore P}$ This argument uses the Simplification rule.
(c) If John has a B in calculus, he will gradecate John has a B in Calculus.
Therefore, he will graduate.
* let P : John has a B in Calculus q : He will graduate
Then this argument is of the form $\frac{p \rightarrow q}{p q}$ Modusponens
(d) If Harry is dentist, then Have drills teeth. Hare does not drill teeth.
Therefore, Harl is not a dentist.
Q Let P : Harry is dentist
q: Harry drills teeth
then this argument is of the form
$\frac{P \rightarrow q}{} \frac{7 q}{\therefore 7 p} \quad$ Modes tollens
(e) Either elephants are black or monkeys are green Elephants are grey.
Therefore, monkeys are green.
t Let p : Elephants are black
q : Monkeys are green then this argument is of the form

$$
\frac{P V Q}{\square P Q} \quad \text { Disjunctive syllogism }
$$

(f) If Mary is a senior, then mary wears a pin If Mary wears a pin, then Mary will graduate. Therefore, If Mary is a senior, then Mary will graduate.

Let p : Mary is a Senior
\& q: Mary wears a pin
r : Mary will graduate
Then This argument is of the form
$p \rightarrow q$
$q \rightarrow \gamma$
$\therefore p \rightarrow \gamma$
Hypothetical syllogism
Q. Check the validity of the following argument.

If Ram has completed B.E computer science or M.B.A, then he is assured of a good Job.
If Ram is assured of a good Job; he is happy.
Ram is not happy.
Therefore, Ram is not Completed M.B.A.
\& Let P : Ram has completed B.E computer science
q: Ram has completed M.B.A.
r : Ram is assured of a good Job.
s : Ram is happy.
The given premises are: $1 \cdot(p \vee q) \rightarrow \gamma$

$$
\begin{aligned}
& \text { 2. } r \rightarrow S \\
& 3.7 s
\end{aligned}
$$

1. $(p \vee q) \rightarrow \gamma \quad$ premise 1
2. $\quad r \rightarrow s$
3. $(p \vee q) \rightarrow s$

Hythothetical syllogism using (1) \& (2)
4. 75
5. 7 ($p \vee q$) premise 3
6. $\neg p \wedge \neg q$
7. 79

Moduct pollens using (3) \& (4)
U sing De Morgans Law
Simplification using (6).
Therefore, the conclusion is $7 q$.
Fallacies:- several common fallacies arise in incorrect arguments. These fallacies resemble rules of inference but are based on contingencies rather than tautologies. Example: The proposition $[(p \rightarrow q) \wedge q] \rightarrow p$ is not a tautology. because if is false when p in false and q is true.

Predicates and Quantifiers:-
Predicate Logic:- deals with predicates, which are propositions containing variables. It is an extension of propositional logic. It adds the concept of predicates and greantifiers to better Capture the meaning of statements. that Cannot be adequately expressed by propositional logic.
Example: "Every person who is 18 years or older, is eligible to vote.". The above statement cannot be adequately expressed using only propositional logic. Therefore we need a more powerfuttype of logic.
Q. What is a predicate?

Consider the statement, is greater than $3^{"}$ has two parts. The first part, the variable x, is the subject of the statement. The second part, "is greater than 3", is the predicate. If refers to the property that the subject of the statement can have.

The statement " x is greater than 3 " can be denoted by $P(x)$. where. P denotes the predicate" is greater than" and x is the variable.
The predicate P can be considered as a function. It tells the truth value of the statement $P(x)$ at x. once a value has been assigned to the variable. x, the statement $P(x)$ becomes a proposition and has a truth or false value. In general, a statement involving n variables $x_{1}, x_{2}, \ldots, x_{n}$. can be denoted by $P\left(x_{1}, x_{2}, \ldots ; x_{n}\right)$. Here p is also referred to as n-place predicate or n-ary predicate.
Example (1 : Let $p(x)$ denote the statement " $x>10$ ". What are the Truth values of $P(11)$ and $P(5)$?
801: $P(I I)$ is equivalent to the statement $11>10$, which is True. $P(5)$ is equivalent to the statement $5>10$, which is False.

Example@: - Let $R(x, y)$ denote the statement " $x=y+1$ ". What is The truth of the propositions $R(1,3)$ and $R(2,1)$?
Sol: $R(1,3)$ is the statement $1=3+1$, which is false. $R(2,1)$ is the statement $2=1+1$, which is True.
We shall symbolize/represent a predicate by capital Letters and subject by small letter.
(1) "Florida is a state" can be represented as $S(f)$.
(2) "Joe is a mathematician" represented as MC).
n-place predicate:
Examples: (i) Ram is a student - $S(r)$ - 1-place predicate
(2) Jack is taller than Jill- $T\left(g_{1}, j_{2}\right)$-2-place predicate.
(3) Sushan sits between Jack and Jill- $S\left(S_{1}, j_{1}, g_{2}\right)$ 3 place predicate.

Predicate: A predicate is an expression of one or more variables defined on some specific domain. A predicate with variables Can be made a proposition by either assigning a value to the Variable or by quantifying the variable.
Examples: (1) $R(x): x$ is a rational number
(2) $G(y): y>5$
(3) $S(x, y): x+y=5$
(4) $L(x): x$ is a lawyer.
(5) $c(y): y$ is a computer programmer

Quantifiers:-
when the variables in a propositional function are assimed Values, the resulting statement becomes a proposition with a certain truth value. However, there is another important way, called quantification, to create a proposition from a proposition function.
Quantification expresses the extent to colich a predicate is true over a range of elements. In English, del some, many, none, and few are used in suantifications.
There are two 5 pes of quantifiers. They are:
(1) Uniliersal quantifier: which tells us that a predicate is true for every element under consideration.
(2) Existential mantificr:- Which tells as that there is one or more element under consideration for which the predicate in true.
(1) Universal quantifier:-

Many mathematical statements assert that a property is true for all values of a variable in a perticular domain, called the domain of discourse (or the universe of discourse) or domain.
Def: The universal quantification of $P(x)$ is the statement " $p(x)$ is true for all values of x in the domain".

The notation $\forall x P(x)$ denotes the universal quantification of $P(x)$. Here \forall is called the universal gleantifier.
We read $\forall x P(x)$ as "For all $x p(x)$ " or
"For every $x P(x)$ " or "For each $x p(x)^{\prime \prime}$ ".
$\forall x$ quantifies a conditional. Staternent.
An element for which $p(x)$ is false is called a

Counterexample of $\forall x p(x)$.
Examples: All roses are red.
This can be understood as for every x. If x is rose then x is red.
$R(x)$: x is rose
$p(x)$: x is red
$\forall x$ may be expressed os: All, for each, given any, for any, for arbitrary.
Note: It is best to avoid Using 'fo any". It is ambiguous as to Whetter "any "means every or some.

The statement as $[R(x) \rightarrow P(x)]$ before use $\forall x$

$$
\therefore \quad \forall x[R(x) \rightarrow P(x)]
$$

(2) Every apple is red

For every x, if x is apple then x is red.
$A(x): x$ is apple
$R(x): x$ is red.

$$
\forall \forall x[A(x) \rightarrow R(x)] .
$$

(3) Any integer is positive or negative

For any x if x is an integer then x is either positive or negative.
$I(x): x$ is an integer
$P(x): x$ is positive or negative.

$$
\forall x[I(x) \rightarrow P(x)]
$$

The symbols (x) or $(\forall x)$ are called universal gruantificis.
(2) Existential quantifier:-

Many mathematical statements assert that there is an element with a certain property.
A proposition that is true if and only if $P(x)$ is true for at least one value of x in the domain.
Definition: The existential quantification of $p(x)$ is the proposition "There exints an element x in the domain such that $p(x)$ ".

We use the notation $\exists x p(x)$ for the existential quantification. Here \exists in called existential quantifier.
Without specifying the domain, the stunt $\exists x p(x)$ has no meaning. $\exists x P(x)$ is read as (1) There exists an x such that $P(x)$
(2) There is an x such that $p(x)$
(3) There is atleant one x such that $P(x)$
(4) For some $x P(x)$.

Ix quantifies a conjunction

Existential quantification may be expressed as:
There exists, for some, for at least one, or there is.
Examples: (1) There exists a man
\&:- There exists an x such that x is a man.
$M(x): x$ is a man
$\exists x \quad M(x)$
(2) Some men are clever.

There exists an x such that x is a man and x is clever.
$M_{1}(x): x$ is a man
$\mu_{2}(x): x$ is a clever.
$\exists x\left[M_{1}(x) \wedge M_{2}(x)\right]$.
sentence
(1) $\forall x P(x)$
(2) $\exists x P(x)$
(3) $\neg[\exists x p(x)]$
(4) $\forall x[\neg p(x)]$
(5) $\exists x[\neg p(x)]$
(6) $\neg[\exists x[\neg p(x)]]$
(7) $7[\forall x P(x)]$
(8) $\neg[\forall x[\neg p(x)]]$

From the above table, we can conclude that
"All true" means "None False"
"All False" means "None True".
"Not all true" means
"Not all False" means "At lest one True".

The above eight expressions can be grouped as: (Equivalent), "All true. $\{\forall x p(x)\} \equiv\{\neg\{\exists x\{\neg p(x)\}\}\}=$ 'None False "All False" $\{\forall x\{\neg p(x)\}\} \equiv\{\neg\{\exists x p(x)\}\}=$ "None True".
"Not all true" $\{\neg\{\forall x p(x)\}\} \equiv\{\exists x[\neg p(x)]\}=$ "At least one False".
"Not all False" $\{\neg\{\forall x\{\neg p(x)\}\}\} \equiv\{\exists x p(x)\}=$ "At least one True".
Quantifiers:
Statement
When true?
When False
(1) $\forall x p(x) \quad p(x)$ is true for every x There is an x for which $p(x)$ is false.
(2) $\exists x p(x)$

There is an x for which $p(x)$ is true
$p(x)$ is false for every x.

Negating Quantified Expressions:-

Statement
(1) All true
(2) At least one False
(3) All False
(4) At least one true

Negation

$$
\exists x[7 p(x)]
$$ At least one False $\forall x p(x)$ All true $\exists x p(x)$ At least one true $\forall x[\neg p(x)]$ All False.

predicate calculus:-
The area of logic that deals with predicates and quantifiers is called the predicate calculus.
Q. Write the following statements in Symbolic form:
(a) Some thing is good
(b) Every thing is good
(c) Nothing is good
(d) something is not good.

Let $G(x)$ be a good.
(a) $\exists x(G(x))$
(b) $\forall x(G(x))$
(c) $\forall x(\neg(G(x)))$
(d) $\exists x(\neg(G(x)))$.
Q. Write each of the following in symbolic form:
(a) Alt men are good $\forall x[M(x) \rightarrow G(x)]$
(b) No men are good
(c) Some men are good $\exists x[M(x) \wedge G(x)] . \exists x[M(x) \wedge \neg G(x)]$.
$M(x): x$ is ${ }^{a}$ man
$G(x)$: x is good.
predicate logic uses the following new features:
Variables: x, y, z
predicates: $P(x), Q(x)$
Quantifier - Existential - $\forall x p(x)$
propositional functions are a generalization of propositions.

- They contain variables and a predicate e.8. $P(n)$.
- Variables can be replaced by elements from their domain Ex: Let $P(x): x>0$ domain be the integers.
$p(-3)$ is false
$P(0)$ is false
$p(3)$ in True.
Q. Translate each of the following statements into symbols, Using quantifiers, Variables, and predicate symbols.
(a) All birds can fly

Let $B(x)$: x is a bird
$F(x)$: x Can fly
Then the stat C an be written as $\forall x[B(x) \rightarrow F(x)]$ Where universe of discourse is the set of all birds.
(b) Some babies ave illogical.
(f) All babies are illogical.

Let $B(x)$: x is a baby

$$
\forall x[B(x) \rightarrow I(x)]
$$

$I(x): x$ is illogical
(i) Some men are not saints $\exists x[M(x) \wedge(\neg G(x))]$
The given stat can be symbolized as $\exists x[B(x) \wedge I(x)]$ The universe of discourse is the set of all babies.
(c) Some men are gaints (8) All men are paints

$$
\forall x[M(x) \rightarrow G(x)]
$$

Let $M(x): x$ is a man (5) No men are gaints
$G(x): x$ is a gaint $\forall x[(m(x)) \rightarrow T G(x)]$
stoat en be written as $\exists x[M(x) \wedge G(x)]$
where universe of discourse is the set of men in the world.
(d) There is a student who likes mathematics but not history.
Let $S(x)$: x is a student
$M(x): x$ likes mathematics
$H(x)$: x likes history
The strut can be written as $\exists x[S(x) \wedge M(x) \wedge H(x)]$ where universe of discourse is the set of all students at your college.
(e) Not ale birds Can fly.

$$
\rightarrow(\forall x)[B(x) \rightarrow F(x)] \text { or } \exists x[B(x) \wedge(7 F(x)]
$$

(J) If x is a man, then x is gaint.

Let $M(x)$: x is a man
$G(x)$: x is paint
symbralized as $M(x) \rightarrow G(x)$.
(k) x is an odd integer and x is prime.
$I(x): x$ is an odd integer $p(x): x$ is prime
The stunt can be symbolized as $I(x) \wedge P(x)$.
(l) For all integers x, x is odd and x is prime.

Let. $I(x): x$ is odd
$p(x): x$ is prime
The strut cen be written as $\forall x[I(x) \wedge P(x]$
(r) There is an integer $x_{\text {such that }} x$ is odd and x is prime.

$$
\exists x[I(x) \wedge p(x)]
$$

(71) Not every actor is talented who is famous.

Let $A(x): x$ in an actor
$T(x)$: x is talented
$F(x)$: x is famous

$$
\begin{aligned}
& x \text { in famous } \\
& \exists x[A(x) \wedge F(x) \wedge(\neg T(x))]
\end{aligned}
$$

At least one actor who is famous is not talented.
(0) x is rational implies that x is real.

Let $R_{1}(x)$: x is rational
$R_{2}(x)$: x is real

$$
R_{1}(x) \rightarrow R_{2}(x)
$$

(1) Not every graph is planar

Let $G(x): x$ in a graph

$$
P(x): x \text { is planar }
$$

The stint can be Written as $T[\forall x(G(x) \rightarrow P(x))]$
(9) Some numbers are rational.

Let $N(x): x$ is a number
$R(x)$: x is rational
The stoat can be Written as $\exists x[N(x) \wedge R(x)]$
(r) Some numbers are not rational

$$
\exists x[N(x) \wedge(\neg R(x))]
$$

(s) Not all numbers are rational.

$$
\neg[\forall x[N(x) \rightarrow R(x)]]
$$

(t) If some students are Lazy, then all Students are lazy.
$S(x): x$ is a student
$L(x)$: x is tarry.
some students are Lazy

$$
[\exists x[S(x) \wedge L(x)]]
$$

All students are Lazy

$$
\forall x[S(x) \rightarrow L(x)]
$$

\therefore The final stent can be written as

$$
\begin{aligned}
& \text { final Start Can be write as } \\
& (\exists x[S(x) \wedge L(x)]) \rightarrow(\forall x[S(x) \rightarrow L(x)]) \text {. }
\end{aligned}
$$

(1) Examples:
$p(x)-x$ in free
$p(5)$ - x is bound to 5
$\forall x p(x)$ - x is bound by qreanfifier.

Other quantifiers:-
(1) Uniqueness quantifier:-

Definition: "There exists a unique x such that $P(x)$ is true". denoted by \exists ! or $\exists 1$. $\exists!x p(x)$ or $\exists, x p(x)$.
other phrases for uniqueness quantification include "There is exactly one" and "There is one and only one".

Precedence of quantifiers:-
The quantifiers \forall and \exists have higher precedence than all logical operators from propositional calculus.
For example, $\forall x P(x) \vee Q(x)$ is the disJunction of $\forall x P(x)$ and $Q(x)$.

$$
C \equiv(\forall x p(x)) \vee Q(x) \text {. }
$$

Binding variables:-
When a quantifier is used on the variable x, we say that thin When a quantifier is used on the variable is bound. Example: $P(5)-x$ is bound
to 5
occurance of the variable is

- An occurance of a variable that is not bound by a quantifier (or)
(1) Set equal to a perticular value in said to be free. Ex: $P(x)$ $-x$ is fee All the variables that occur in a propositional function must be bound or set equal to a particular value to turn it onto a proposition. This can be done Using a Combination of Universal quantifiers, existential quantifiers and value assignments.
Example: $\exists x(x+y=1)$, the variable x is bound by the existential quantifier $\exists x$, but the Variable y is free because it is not bound by a quantifier and no value is assigned to this variable. $\therefore \exists x(x+y=1), x$ is bound, but y is free.
The part of a logical expression to which a quantifier is applied is called the scope of this quantifier:
A variable is free if it is outside the scope of all quantifiers.
$\exists x(p(x) \wedge Q(x)) \vee \forall x R(x)$, all variables are bound. The scope of the first quantifier, $\exists x$, is the expression $P(x) \wedge Q(x)$. because $\exists x$ is applied only to $P(x) \wedge Q(x)$ and not to the rest of the strut.
i.e the existential quantifier binds the variable x in $P(x) \wedge Q(x)$. and the universal quantifier $\forall x$ binds the variable x in $R(x)$. observe that using two different variables x and y, as $\exists x(P(x) \wedge Q(x)) \vee \forall y R(y)$. because the scopes of the two deantifiors donot overlap.

Logical equivalences involving Quantifiers:-

Definition:- stents involving predicates and quantifiers are logically equivalent if and only if they have the same truth value nomatter which predicates are substituted into these stints and which domain of discourse is used for the variables in the se propositional functions.
$S \equiv T$, indicates that S and T involving predicates and quantifiers are logically equivalent.
Example: $\quad \frac{\forall x(P(x) \wedge Q(x))}{G_{\text {true }} \text { - Asp - true }} \equiv \frac{\forall x p(x) \wedge \forall x Q(x)}{\text { J }}$.
Translating from English into logical expression:-
Q. Express the stent "Every student in thin class has studied calculus" using predicates and quantifiers.
d We rewrite the suit as:
"For every student in this class, that Student has studied calculus".
Next, we introduce a variable x, so the above stint becomes For every student x in this class, x has studied calculus.
Let, $(x): x$ has studied Calculus.
if the domain for x consists of the students in the class, So, we can translate the stunt as $\forall x c(x)$.
Q. For every person x, if x is a student, then x has visited Mexico or x has visited Canada.
Let $M(x): x$ has visited mexico $c(x)$: x has visited canada $S(x)$: x is a student

$$
\forall x[S(x) \rightarrow[M(x) \vee((x)]]
$$

Using quantifiers in system specifications:-
Q. Use predicates and quantifiers to express the system specifications
(1) "Every mail message Larger than one megabyte will be compressed".
(2) "If a user is active, at least one network link will be available".
o
(1) Let $s(m, y)$ be Mail message m is Larger than y megabytes. Where the Variable x has the domain of all mail messages and the variable y is a positive real number.
$c(m)$ denote Mail message m will be compressed.
So, the stat can be written as $\forall m[S(m, 1) \rightarrow C(m)]$
(2) Let $A(u):$ user u is active

Where u has the domain of all users.
$S(n, x)$: Network link n is in state x
where n has the domain of all network links and x has the domain of all possible states for a network link.
Then the specification "If a user is active, at least one network link will be available".
Can be represented as $\exists u A(u) \rightarrow \exists n S(n$, available).
problem solving:-
All hons are fierce.
Some Lions do not drink coffee. \} premises
Conclusion: Some fierce creatures do not drink coffee.
\& Let $p(x): x$ is a Lion
$Q(x)$: x is fierce
$R(x)$: x drinks coffee
Assuming that the domain consists of all creatures. we express the alone sties as

$$
\begin{aligned}
& \forall x[P(x) \rightarrow Q(x)] \\
& \exists x[P(x) \wedge \neg R(x)] \\
& \exists x[Q(x) \wedge \neg R(x)]
\end{aligned}
$$

- Res ed

Rules of Inference for quantified statements:-
©
Rule of Inference
$\frac{\forall x p(x)}{\therefore p(c)}$
(2) $\quad P(C)$ for any arbitrary C $\therefore \forall x P(x)$
(3) \qquad Pres ers
$\therefore P(C)$ for Somme element c
(4) $P(C)$ for some element C $\therefore \exists x P(x)$
Name

Universal instantiation

Universal generalization

Existential instantiation

Existential generalization

(1) Universal instantiation/specification:-

The rule of inference used to conclude that $P(C)$ in true, Where c in a perticular member of the domain, given the premise $\forall x p(x)$.

$$
\frac{\forall x p(x)}{\therefore P(c)}
$$

Example (1):- Universe is the set of humans

Let $M(x): x$ is mortal, then if $F_{x} M(x)$ is true.
ice All men are mortal. They as per this rule We Can Conclude that "Socrates in mortal".
(2) All Women are wise
so Lisa is wise. Where lisa is a member of the domain of all Women.
(2) universal generalization:-
$\forall x p(x)$ is true, given the premise that $p(c)$ is true for ale elements C in the domain.
This rule holds -provided we know $p(c)$ is true for each element in the universe.

$$
\begin{aligned}
& P(c) \text { for an arbitrary } c \\
& \therefore \forall x p(x)
\end{aligned}
$$

(3) Existential instantiation:-

There in an element c in the domain for which $P(C)$ is true if we know that $\exists x p(x)$ is true.
we cannot select an arbitrary value of c.

$$
\exists x p(x)
$$

$\therefore P(c)$ for some element c
(4) Existential generalization:-
$\exists x p(x)$ is tree when a perticular element c with $p(c)$ true is known.
$P(c)$ for some element c

$$
\therefore \exists x p(x) .
$$

problems:-
(1) Consider the argument

All men are fallible
All kings are men
Therefore, alt kings are fallible.
Let $M(x)$: x is a man
$k(x)$: x is a king
$F(x)$: x is fallible
Then the above argument is symbolized as

$$
\begin{array}{lr}
\text { ב. } & \forall x[M(x) \rightarrow F(x)] \\
\text { 2. } & \forall x[K(x) \rightarrow M(x)] \\
3 . & \therefore \forall x[K(x) \rightarrow F(x)]
\end{array}
$$

A formal proof is as follows:

Assertion

1. $\forall x[M(x) \rightarrow F(x)]$
2. $M(c) \rightarrow F(c)$
3. $\forall x[K(x) \rightarrow M(x)]$
4. $\quad K(c) \rightarrow m(c)$
5. $\quad k(c) \rightarrow F(c)$
6. $\forall x[k(x) \rightarrow F(x)]$

Reason
premise 1
Step 1 and Universal Specification) instantiation
premise 2
step 3 and Unversal instantiation transitive steps $2>4+$ sion $(H)^{\text {mule. }}$. step 5 and hypothetical syllogism.
(2) Lions are dangerous animals

There are Lions.
Therefore, there are dangerous animals.
4

$$
\begin{aligned}
& L(x): x \text { is a Lion } \\
& D(x): x \text { is dangerous } \\
& 1 \quad \forall x[L(x) \rightarrow D(x)] \\
& 2 \quad \exists x L(x) \\
& 3 \quad \therefore \exists x D(x) .
\end{aligned}
$$

Formal proof:-

$$
\begin{aligned}
& \text { 1. } \quad \exists x L(x) \\
& \text { 2. } L(a) \\
& \text { 3. } \forall x[L(x) \rightarrow D(x)] \\
& \text { 4. } L(a) \rightarrow D(a) \\
& \text { 5. } D(a) \\
& \text { 6. } \exists x D(x)
\end{aligned}
$$

Reasons
 premix e 2

Step 1 Existential instantiation steperco of avatar
step $3 *$ universal instantiation
Step $2+4$ Hypothetical syllogism step 5 \& Existential generalization.

Nested quantifier:-
Two quantifiers are nested if one is with in the scope of the other.

$$
\uparrow_{i}^{p(x, y)}
$$

Example: (1) $\forall x \not \underbrace{\exists y \mid(x+y=0)}$
$Q(x)$ Everything within the scope of a
$\forall x Q(x)$ neantifier. in the propositional function.

$$
\begin{array}{r}
\text { 孔 } \exists y P(x, y) \\
P(x, y) \text { is }(x+y=0)
\end{array}
$$

Nested quantifiers commonly occur in mathematics and computer science.
(2) $\forall x \forall y(x+y=y+x) \quad x$ and y are variables in the domain of all real numbers.
\&
For all real numbers x and $y, x+y=y+x$
similarly, $\forall x \not \forall y \not \forall 2(x+(y+2)=(x+y)+2) \Rightarrow$ Associative law stor
(3) $\forall x \forall y((x>0) \wedge(y<0) \rightarrow(x y<0))$ sedition of read numbers. Where the domain for both variables
d For every real numbers x and y, if x is positive and y is negative then $x y$ is negative.
The product of a positive real nuenerer and a negative real number is always a negative real number.

Note: In working with quantifications of more than one variable, it in sometimes helpful to think in terms of nested loops.

The order of Quantifiers:-

Many mathematical statements involve multiple quantification of propositional functions involving more than ore variable.
Example (1): Let $p(x, y): x+y=y+x$. What are the truth values of the quantification $\forall x \forall y P(x, y)$ and $\forall y \forall x p(x, y)$. Where the domain for all variables consists of ale real numbers?
a) $\forall x \forall y p(x, y)$ denotes the proposition
"For all real numbers x, for all real numbers $y, x+y=y+x$ ".
because $p(x, y)$ is true for all real numbers x and y, the proposition $\forall x \forall y p(x, y)$ is true.
Theorem The stare says" The order of nested universal quantifiers in a stunt without other quantifiers can be changed without changing the meaning of the quantified strut.
Theorem 2: The order of nested existential quantifiers in a stat without other quantifiers's can be charged without changing the meaning of the quantified stat.]

Table: Quantification of two Variables
(1) $\forall x \forall y P(x, y)$
$\forall y \forall x P(x, y)$ every pair x, y.
(2) $\forall x \exists y p(x, y)$
(3) $\exists x \forall y p(x, y)$

For every x there is a y for which $P(x, y)$ is true.

> When False?

There is a pair x, y for which $P(x, y)$ is false.

There is an x such that $p(x, y)$ is false for every y.

For every x there is a y for which $P(x, y)$ is false.

There is an x for which $P(x, y)$ is true for every y
$p(x, y)$ is false for every pair x, y.
(7) $\exists x \exists y p(x, y)$ $\exists y \exists x p(x, y)$

There is a pair x, y for which $P(x, y)$ is true.

Translating Mathematical stints into stints involving Nested aleantifiers:-
PO Translate the stout "The sum of two positive integers is always positive" into a logical expression.
\& "For every two integers, if these integers are both positive, then the sum of these integers is positive".
we introduce the variables x and y. so we can state the stunt as "For all positive integers x and $y, x+y$ in positive".

$$
\begin{aligned}
& \text { Stent as } \forall y((x>0) \wedge(y>0) \rightarrow(x+y>0)) \\
& \Rightarrow \forall x \forall y
\end{aligned}
$$

domain: x and y are variables consists of all integers.
Then the start: The sem of two positive integers in always positive".becomes "For every two positive integers, the sum of these integers is positive".
We can express this as $\forall x \forall y(x+y>0)$,
where the domain for both variables consists of all positive integers.
(2) "Every real number except zero has a multiplicative inverse" (A multiplicative inverse of a real number x is a real number y such that $x y=1$).
\& "For every real number x except zero, x has a multiplicative inverse". We cen recorite this as" For every real number x, if $x \neq 0$, then there exists a real number y such that $x y=1$ ".
This can be rewritten as $\forall x(x \neq 0) \rightarrow \exists y(x y=1)$.
(3) "If a person is female and is a parent, then this person is Someone's mother" with a domain consisting of all people.
b) "For every person x, if person x in female and person x is a parent, then there exists a person y such that person x is the mother of person $y^{\prime \prime}$
Let $F(x): x$ is female
$p(x)$: x is a parent
$M(x, y): x$ in the mother of y
The stat can be written as $\forall x((F(x) \wedge p(x)) \rightarrow \exists y M(x, y))$ The final strut is $\forall x \exists y[(F(x) \wedge p(x)) \rightarrow M(x, y)]$

Negating Nested quantifiers:-
statements involving nested quantifiers can be negated by successively applying the rules for negating statements involving a single quantifier.
Example (1): Express the negation of the stint $\forall x \exists y(x y=1)$. f Apply De: Morgan's Laws for quantifier b.

$$
\neg(\forall x \exists y(x y=1))=\exists x \forall y(x y \neq 1)
$$

Quantifies as conjunctions and Disjunctions:-

$$
\begin{aligned}
& \forall x P(x)=P(1) \wedge p(2) \wedge P(3) \\
& \exists x P(x)=P(1) \vee R(2) \vee P(3) .
\end{aligned}
$$

If U consists of the integers 1,2 and 3 .
Cocenter example:-
An element for which $p(x)$ is false is called a counter example of $\forall x p(x)$.
Example (1): Let $Q(x): x<2$. What is the truth value of the quantification $\forall x Q(x)$, where the domain consists of ace real numbers?
\& $Q(x)$ is not true for every real number x, because, for instance, $Q(3)$ is false. ice $x=3$ is a counter example for the stint $\forall x Q(x)$. Thus $\forall x Q(x)$ is false.
Q. Translate the following strut into English.

$$
\forall x(c(x) \vee \exists y(c(y) \wedge F(x, y)))
$$

Where $C(x)$: x has a computer
$F(x, y): x$ and y are friends.
Domain of x and y : all students.
\& For every student x in your school, x has a computer or there is a student y such that y has a computer and x and y are friends.
In other words, Every Student has a computer or has a friend. that has a Computer.
Q. Translating the following statements into logical expression.
(a) Everyone has exactly one best friend.
$B(x, y)$: y is the best friend of x.
$\&$
For every person x, person x has exactly one best friend.
Introducing the universal quantifier, then the statement as $\forall x$ (person x has exactly one best friend) Where the domain consists of ale people.
We rewrite the statement as
For ale x, there is y who is the best friend of x and for every person z, if perron z is not person y, then z is not the best friend of x.
$\forall x \exists y(B(x, y) \wedge \forall z[(z \neq y) \rightarrow 7 B(x, z)])$
Domain of $x_{1} y$, and z : all people.
(b) There is a woman who has taken a flight on every airline in the world.
of Let $T(\omega, f)$: w has taken flight
$A(f, a)$: flight is on airline
$\exists w \forall a \exists f(T(w, f) \wedge A(f, a))$
Domain of : are people
Domain of $f:$ all flights
Domain of a : all airlines.
[In other way, $\exists \omega \forall a \exists f R(\omega, f, a)$
where $R(\omega, f, a)$ is " w has taken f on a "]

Introduction to proofs:-
(1) A theorem can also be referred to as facts or results. is a statement that can be shown to be true. of is a valid argument that establishes the truth of a mathematical statement. A proof can use the hypothesis of the theorem. A theorem is true with a proof (Valid argument) using:

- Definitions
- previously proven theorems or other. Theorems.
- Rules of Inference
- Axioms - A stet that is assumed to be true.

Application:- Verifying that Computer programs are correct
(2) Establishing that operating systems are secure.
(3) Making inferences in artificial Intelligence.
(4) Showing that system specifications are consistent.

- A Lemma is a 'helping theorem' or a result which is needed to prove a theorem.
- A corollary is a result which follows directly from a Theorem.
- Less important theorems are sometimes celled propositions.
- A conjucture is a statement that is being proposed to be true. Once a proof of a conjurture is found, if becomes a theorem. It may turn out to be false. so they are not theorems.
Understanding how Theorems are stated./ Forms of Theorems
- Many theorems assert that a property holds for all elements in a domain, such as the integers, the real numbers.
- often the universal gleantificr (needed for a precise strut of a theorem) is omitted by standard mathematical convention.

Example: If $x>y$, where x and y are positive real numbers, then $x^{2}>y^{2}$. means that
For all positive real numbers $x \geqslant y$, if $x>y$, then $x^{2}>y^{2}$.

Methods of proving theorems:-
(1) Direct proof:-

In a direct proof, we show that conditional statement $p \rightarrow q$ is true. We assume that p is true and show that q must abs true, so that the combination p is true and q false never occcers.
In a direct proof, we assume that p is true and use axioms, definitions, and previously proven theorems, together with rules of inference, finally to show that q must also be true.
\rightarrow Sequence of steps leading from the hypothesis to the Conclusion: [Direct proof lead from hypothesis of a theorem to the conclusion].
Definition . The integer n is even if there exists an integer k such that $n=2 k$, and n is odd if there exists an integer k such that $n=2 k+1$.
(Every integer is either even or odd and no integer is both even and odd).
Example (1): Give a direct proof of the theorem" If n is an odd integer then n^{2} in odd".
sol: Assume n is an odd integer Then $n=2 k+1$ for some integer k
We can square both sides of the equation $n=2 k+1$

$$
\begin{aligned}
& \text { in square both sides of the equate } \\
& \begin{aligned}
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1 & =2\left(2 k^{2}+2 k\right)+1 \\
& =2 m+1 \\
\text { where } & m=2 k^{2}+2 k
\end{aligned}
\end{aligned}
$$

Hence x^{2} is odd.
\therefore We have proved that if min an odd integer, then n^{2} iss odd.

Example (2): Give a direct proof that if m and n are both perfect sequares, then $n \mathrm{~m}$ is also a perfect square.
Sol: Let r and s are two integers,
then $m=r^{2}$ and $n=s^{2}$
now

$$
\begin{aligned}
n m & =s^{2} r^{2} \\
& =(s r)^{2} \\
& =(t)^{2} \text { where } t=s r
\end{aligned}
$$

Hence proved.
\therefore if m and n are troth perfect squares, then $n m$ is also a perfect square.
(2) proof by Contraposition:-
proof by contraposition is a type of indirect proof. we know that $p \rightarrow q \equiv 7 q \rightarrow 7 p$.
Thin means that the conditional statement $p \rightarrow q$ can be proved by showing that its contrapositive $\neg q \rightarrow \neg p$ is true.
In a proof by contraposition of $p \rightarrow q$, we assume that $7 q$ is true (or we take $7 q$ as a hypothesin) and using axioms, definitions, and previously proven theorems, together with rules of inference, and we show that Ip is true.
Example (1):- prove that if n is an integer and
 (Ta)
Sol: Assume that n is even (negation). So, n can be expressed as 2 K for some integer k (definition of even)

$$
\begin{aligned}
& n=2 k \\
& \therefore \quad 3 n+2=3(2 k)+2 \\
&=6 k+2 \\
&=2(3 k+1)
\end{aligned}
$$

So, $3 n+2$ is even
Hence proved.

Example@:- prove that if $n=a b$, where a and bo are positive integers, then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.
Sol: $\quad n=a b$ then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
Now assume that the above stone t in false

$$
\begin{aligned}
& 7(a \leq \sqrt{n} \quad \text { or } b \leq \sqrt{n}) \\
& a>\sqrt{n} \text { and } b>\sqrt{n} \\
& a b>\sqrt{n} \cdot \sqrt{n} \\
& a b>n
\end{aligned}
$$

$a b$ is not erreal to n ie $a b \neq n$
which contradicts the statement $n=a b$.
(3) proof by contradiction:- (AKA reduction ad absurdum) It in another type of indirect proof. $p \rightarrow q$
[To. prove P, assume $7 P$ and derive a contradiction such as $P \wedge \neg P$. Since we have shown that $\neg P \rightarrow F$ is true, it follows that the contrapositive $T \rightarrow P$ as holds.]
Assume P and $7 Q$ ares true. Showing that q must also be True. Thin implies that q and $7 q$ are both true. This is a contradiction. (or) Assume P and $7 q$ in true. Showing that $7 P$ must also be true. Thin implies that $P \& 7 P$ are both true. This is a contradiction.
Example (1): "prove that $\sqrt{2}$ is irrational by giving a proof by Contradiction.
Definition 2: The real number r in rational if there exist integers p and q with $q \neq 0$ such that $r=P / q$. A real number that in not rational in called irrational.
let p be the proposition " $\sqrt{2} 1$'s irrational".
IP: $\sqrt{2}$ is rational, and thus $z=\frac{a}{b}$ where a i b have no common factors. Thess $2=\frac{a^{2}}{b^{2}} \Rightarrow 2 b^{2}=a^{2}$ and thus a^{2} is even.
a^{2} in even and so a is even.
let $a=2 c$ for some integer c
$2 b^{2}=4 c^{2}$ and $b^{2}=2 c^{2}$, and b^{2} is even, b must also even. Thisincontradictipoi. Our assumption must be false.

Example@: If $3 n+2$ is odd, then n is odd. Give proof by contradiction Let $p: 3 n+2$ is odd t : n is odd

To construct a proof by contradiction, Assume p \& $7 V$ are true. ire $3 n+2$ is odd and n is even.
If n is even, there in an integer k such that $n=2 k$.
Thin implies that $3 n+2=3(2 k)+2=6 k+2=2(3 k+1)=$ even $=7 p$
because an integer is even of it in not odd. Because $p \neq 7 p$ are true, we have a contradiction.
(4) Vacuous and Trivial proofs:-

Vacuous proof:- If we know p is false then $p \rightarrow q$ is true as well. [or $p \rightarrow q$ is true when p in false] Example: (1) If If am both rich and poor then $2+2=5$.
Trivial proof:- is let $p(n): \forall n$ If $n>1$, then $n^{2}>n$, where the domain If we know o is le integers. sol: Vacuously, $P(0)$ in true since true [or $p \rightarrow q$ is true when q is true] in true as well.
Example (1): If it in raining, then $1=1$.
(2) Let $p(n)$. If a and b are positive integects toith $a \geqslant b$, then $a^{n} \geqslant k^{n}$ where the sol: Trivially, $p(0)$ is true since: $a^{\circ} \geqslant b^{\circ} \geqslant$ reg ard len to the hi integers.
(5) Counter example:- A statement of the form $\forall x p(x)^{\text {groins }}$ to be false.
Ex (1) Show that the stun" Every positive integer is the sum .of the squares of two integers" is false.
801.: 3 cannot be written as the sum of the squares of two integers. This Statement is True.
Ex (2): Let $Q(x)$ be the stat " $x<22^{\prime \prime}$. $\forall x Q(x)$ in false.
Sol $Q(x)$ is not true for every real number x, for instance, $Q(3)$ in false. i.e $x=3$ in a counter example for the stunt $\forall x Q(x)$. Therefore, $\forall x Q(x)$ is false.
(6) proofs of Equivalence:-

To prove a theorem that is a biconditional statement, ire a strut of the form $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are both true. The validity is based on the tautology.

$$
\begin{aligned}
& \text { tautology. } \\
& (p \leftrightarrow q)
\end{aligned}>[(p \rightarrow q) \wedge(q \rightarrow p)]
$$

Example (1): prove the theorem If n is a positive integer, then n is odd if and only if n^{2} is odd".
Sol: Let $p: n$ is odd and $q: n^{2}$ in odd
To prove this theorem, we need to show that $p \rightarrow q$ and $q \rightarrow p$ are true.
prove $P \rightarrow q$ in true: Assume n is an odd integer
Then $n=2 k+1$ for some integer k
Square on both sides

$$
\begin{array}{r}
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1=2 m+1 \\
\text { where } m=2 k^{2}+2 k \\
n^{2}=\text { odd }
\end{array}
$$

$\therefore \quad P \rightarrow 8$ is true.
prove $a \rightarrow p$ is true:-
Assume x^{2} is odd

$$
\begin{aligned}
& \text { Then } n=2 k+1 \text { for some integer } k, n \text { in } \\
& \text { Fr } \left.^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k+1\right)\right] \\
& \text { y } \rightarrow p \text { in }
\end{aligned}
$$

$\therefore p \rightarrow q$ is true Hence $p \leftrightarrow q$ is true.

The propositions $P_{1}, p_{2}, P_{3}, \ldots, p_{n}$ are equivalent. This can be written as $\quad P_{1} \leftrightarrow P_{2} \leftrightarrow P_{3} \ldots \leftrightarrow P_{n}$,
which states that all n propositions have same tret values, and consequently, that for all λ and J with $1 \leq i \leq n \& 1 \leq j \leq n$, P_{i} and P_{J} are equivalent. one way to prove these mutually equivalent is to lase the tautology.

$$
\left[P_{1} \leftrightarrow P_{2} \leftrightarrow \cdots \leftrightarrow P_{n}\right] \leftrightarrow\left[\left(P_{1} \rightarrow P_{2}\right) \wedge\left(P_{2} \rightarrow P_{3}\right) \wedge \ldots \wedge\left(P_{n} \rightarrow P_{1}\right)\right] \text {. }
$$

If the conditional Starts $P_{1} \rightarrow P_{2}, P_{2} \rightarrow P_{3}, \ldots P_{n} \rightarrow P_{n}$ can be shown to be true, then the propositions $P_{1}, P_{2}, \ldots P_{n}$ are all equivalent.
Example in Next Rage. (1)
(f) mistakes in proofs:- There are many common errors made in constructing mathematical proofs.
Example (17): What is wrong with thin poof that $1=2$? proof: We use these steps, where a and b are two equal positive integers.

1.step 2. $a^{2}=a b$	Reason
Given	multiply both sides of (1) by a

3. $a^{2}-b^{2}=a b-b^{2}$
subtract b^{2} from both sides of (2)
4. $(a-b)(a+b)=b(a-b)$ Factor both sides of (3)
5. $a+b=b$

Deride both sides of (4) by $a-b$
6. $2 b=b$
7. $2=1$

Replace a by $b \operatorname{in}(5)$ because $a=b$ and Sinuplify
Deride both sides of (6) by b

So 1: Every Step in valid except for one, step 5 . There in an error in step 5 . $a-b=0$ by the preminc and division by 0 is undeffued.
Example(2): What M Wrong with this proof?
Theorem:- If n^{2} in positive, then n in positive.
proof: suppose that n^{2} is positive. Because the conditional stat "If n is positive, then n^{2} is positive" is true. We can conclude that n is positive.
Sol: A counter example is supplied by $n=-1$ for which $n^{2}=1$ is positive, but n is negative.
proofs of equivalence:-
Example (D): Show that these stoats about the integer n are equivalent: $\quad P_{1}: n$ is even
$P_{2}: n-1$ is odd
$P_{3}: m^{2}$ is even.
Sol. We Use a direct proof to show that $P_{1} \rightarrow P_{2}$. suppose that n is even.
Then $n=2 k$ for some integer k
consegreently, $n-1=2 k-1=2(k-1)+1$

$$
=2 m+1 \text { where } m=k-1
$$

$$
n-1=o d d
$$

We also use a direct proof to show that $P_{2} \rightarrow P_{3}$:
suppose $n-1$ is odd, then $n-1=2 k+1$ for some integer k
Hence $n=2 k+2$
square on both sides

$$
\begin{aligned}
n^{2}=(2 k+2)^{2}=4 k^{2}+8 k+4 & =2\left(2 k^{2}+4 k+2\right) \\
& =\text { even }
\end{aligned}
$$

$$
=\text { even }
$$

To prove $P_{3} \rightarrow P_{1}$, we use a proof by contraposition.
we prove that if n in not even, then n^{2} is not even. means that "if m is odd, then n^{2} is odd. [Example problems in proof by This completers the proof. contraposition].

$$
\begin{array}{r}
P_{3} \rightarrow P_{1}=\text { if } n^{2} \text { in even, teen niseven } \\
P+7 p \text { in odd } \\
n=2 k+1 \quad \rightarrow 2 k^{2}+2 k \\
n^{2}=(2 k+1)^{2}=2 m+1=\text { odd. }
\end{array}
$$

Hence proved.

Proof methods and Strategy:-
(1) proof by cases.
(2) Exhaustive proof.
(3) Existence proofs
(a) constructive
(b) Nonconstructive.
(4) Uniqueness proofs.
(5) proof Strategies
(a) Forward Reasoning
(b) Backward Reasoning
(c) Looking (Searching) for Counter examples
(d) Adapting Existing proofs
(6) The Role of open problems
(7) Validity problem for propositional and predicate Logic.
(1) proof by cases:-

Def:-A proof by cases must cover all possible cases that arise in a theorem.

- To prove a conditional statement of the form:

$$
\begin{aligned}
& \left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q \\
\equiv & \neg\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \vee q \\
\equiv & \left(\neg p_{1} \wedge \neg p_{2} \wedge \ldots \wedge \neg p_{n}\right) \vee q \\
\equiv & \left(\neg p_{1} \vee q\right) \wedge\left(\neg p_{2} \vee q\right) \wedge \ldots \wedge\left(\neg p_{n} \vee q\right) \\
\equiv & \left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge \ldots \wedge\left(p_{n} \rightarrow q\right) .
\end{aligned}
$$

- Use the tautology

$$
\begin{aligned}
& \text { Use the tautology } \\
& {\left[\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q\right] \leftrightarrow\left[\left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge \ldots \wedge\left(p_{n} \rightarrow q\right)\right]} \\
&
\end{aligned}
$$

can be used as a rule of inference.

- Each of the implications $p_{i} \rightarrow q$ is a case.
where $i=1,2, \ldots n$.
Cases
- Prove a theorem by considering different separately.

Example (1):- prove that if n is an integer, then $n^{2} \geqslant n$.
Solution:
Consider 3 possible cases, when $n=0$, when $n \geqslant 1$, and
w hen $n \leqslant-1$.
(negative).
Case (i): If $n=0$, then $0^{2}=0$, we see that $0^{2} \geqslant 0$. Thus, $n^{2} \geqslant n$ is true in this case.
Case $(i i)$: (when $n \geqslant 1$, we multiply both sides by n, then $n \cdot n \geqslant n \cdot 1$. This implies that $n^{2} \geqslant n$ for $n \geqslant 1$.
Case (iii): when $n \leq-1$. However, $n^{2} \geqslant 0$. It follows that $n^{2} \geqslant n$.
Because the inequality $n^{2} \geqslant n$ holds in all three cases, we conclude that if n is an integer, then $n^{2} \geqslant n$.
Example (2):- prove that $|x y|=|x||y|$, where x and y are real numbers. [Definition: The absolute value of $a,|a|$, erreals a when $a \geqslant 0$
and equals - a when $a<0]$.
Sol: Break the theorem into some cases:
(1) x and y both nonnegative
(2) x nonnegative and y is negative
(3) x negative and y is nonnegative
(4) x and y both negative.
check possible ceres:
Cake 1: We see that $P_{1} \rightarrow q$ because $x y \geqslant 0$ when $x \geqslant 0$ and $y \geqslant 0$, so that $|x y|=x y=|x||y|$.
Case 2: To see that $P_{2} \rightarrow V$, because $x \geqslant 0$ t $y<0$, then $x y \leqslant 0$, So that $|x y|=-x y=x(-y)=|x||y|$. $\begin{aligned} \text { So that }|x y|=-x y=(-x) y= & |x||y| \\ & x<0 \text { \& } y<0, \text { then } x y \geqslant 0 .\end{aligned}$
Case 4: To see that $P_{4} \rightarrow q$, because $x<0$ \& y So that $|x y|=x y=|x||y|$, where Because it in true for all four
x and y are real numbers. x and y are
Leveraging proof by cases:- When it is not possible to consider ale cases of a proof at the same time, a proof by cases should be considered. When should you use such a proof? we look for a proof by cases when there is no obvious way to begin a proof, but when extra information in each case helps move rd. forward.

Without Loss of Generality (FLOG):
How to shorten the proof by cases.

- If the same argument is used in different cases. - proved the cases together, without loss of generality (wog). - Incorrect use of this principle can lead to errors.

Common errors with Exhaustive proof and proof by Cases:-
A Common error of reasoning is to draw incorrect Conclusions from examples. No matter how many separate examples are considered, a theorem is not proved by considering examples unless every posible case is covered.
The problem of proving a theorem is analogoces to showing That a computer program always produces the desired output. No matter how many input values are tested, unless all input values are tested, we cannot conclude that the program always produces the correct output.
Example 1: What in, Wrong with this 'proof'?
Theorem: If x is a real number, then x^{2} is a positive real number.
Proof: Let P_{1} be " x is positive",
p_{2} be " x in negative", and
q be " x 2 in positive".
To show that $p_{1} \rightarrow q$ is true, when x is positive, x^{2} is positive. Because, the product of two positive numbers $=x \cdot x=+v e$.
To show that $P_{2} \rightarrow q$ is true, when x in negative, x^{2} is positive. Because, the product of two negative numbers $\}=(-x)(-x)=+v e$ This completes the proof.
Solution: We have missed the case when $x=0, x^{2}=0$ is not positive. So this theorem is false.
If P is " x in a real number", then we can prove results where P is the hypothesis with three cases, P_{1}, P_{2} and P_{3}, where P_{1} is " x is positive", P_{2} is " x is negative", and P_{3} is " $x=0$ " be cause of the eqreivalunce $P \rightarrow P_{1} \vee P_{2} \vee P_{3}$.
(2) Exhaustive proof:-

Tome theorems can be proved by examining a relatively Small number of examples. Such proofs are called Exhaustive proofs, because these proofs proceed by exhausting all possibilities.
It is a special type of proof by cases where each case involves checking a single example.
Example (1): prove that $(n+1)^{3} \geqslant 3^{n}$ if n in a positive integer with $n \leqslant 4$.
sol: We verify the inequivality $(n+1)^{3} \Rightarrow 3^{n}$ when $n=1,2,3,84$.
For $n=1$, we have $(n+1)^{3}=2^{3}=8$ and $3^{1}=3$, so $8 \geqslant 3$ true.
For $n=2,(n+1)^{3}=3^{3}=27$ and $3^{2}=9$, so $27 \geqslant 9$ true.
For $n=3,(n+1)^{3}=4^{3}=64$ and $3^{3}=27$, so $64 \geqslant 27$ true.
For $n=4,(n+1)^{3}=5^{3}=125$ and $3^{4}=81$, so $125 \geqslant 81$ true.
In each of these four cases, we see that $(n+1)^{3} \geqslant 3^{n}$.
\therefore The method of exhastion to prove that $(n+1)^{3} \geqslant 3^{n}$ if n is a positive integer with $n \leqslant 4$.

(3) Existence proof:-

A proof of a proposition of the form $\exists x p(x)$ is called an Existence proof. Where p is a predicate.
[objects of a perticular type exist.].
There are two types of Existence proof.
(a) Constructive Existence proof:-

Sometimes an existence proof of $\exists x p(x)$ can be given by finding an element a such that $p(a)$ in true. (or) Sometimes : an existence proof of $\exists x p(x)$ can be given by finding an element a, called a witness, such that $P(a)$ is true. Example (1): prove that there in a positive integer that can be written as the sum of cubsitive integers in two different Ways.
Solution:- $\quad 1729=10^{3}+9^{3}=12^{3}+1^{3}$
Cor) $50=5^{2}+5^{2}=7^{2}+1^{2}$ (or) $\left.65=8^{2}+1^{2}=4^{2}+7^{2}\right]$

Sum of squares of positive integers in two different ways.
(b) Non-Constrective existence proof:-

We do not find an element a such that $p(a)$ is true, but rather prove that $\exists x p(x)$ is true in some other way. one common method of riving this method in to use proof by contradiction and show that the negation of the existential quantification implies a contradiction.
Example(1):- prove that there exist irrational numbers x and y such that x^{y} is rational.
Sol: We know that $\sqrt{2}$ in irrational. Consider the number $\sqrt{2}$. If it is rational, we have two irrational numbers x \&y with ry rational, namely $x=\sqrt{2}$ and $y=\sqrt{2}$. On the otherhand, if $\sqrt{2}^{\sqrt{2}}$ is irrational, then we can let $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$ So that $x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=(\sqrt{2})^{\sqrt{2} \cdot \sqrt{2}}=(\sqrt{2})^{2}=2$ rational. This proof in an example of a nonconstructive existence proof. Because we have not found irrational numbers x and y such that x^{y} in rational. Rather, we have shown that either the pair $x=\sqrt{2}$ and $y=\sqrt{2}$. or the pair $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$ have the desired property, but we don ot know which of these two pairs woks.
(4) Uniqueness proof:-

Some theorems assert that existence of a unique element with a perticular property. (or)
some theorems assert that there is exactly one element with this property.
To prove a stint of this type we need to show that an element with thin property exists and that no other element has this property. The two parts of a Uniqueness proof are: Existence: We show that an ekment x with the desired property exists.
Uniqueness: We show that if $y \neq x$, then y does not have the desived property.
Uniqueness: We show that property.
the desived pro the desired property, then
$x=y$.

Remark: showing that there is a unique element x such that $P(x)$ is the same as proving the stout

$$
\exists x(P(x) \wedge \forall y(y \neq x \rightarrow \neg P(y))) \text {. }
$$

Example (1): Show that if a and b are real numbers and $a \neq 0$, then there is a unique real number r such that $a r+b=0$.
Sol:
method 1: The real number $r=\frac{-b}{a}$ is a solution of $a r+b=0$ because $a\left(\frac{-b}{a}\right)+b=0$.
Consequently, a real number r exists for which $a r+b=0$. This is the existence part of the proof.
method 2: Suppose s is a real number such that $a s+b=0$. Then $a r+b=a s+b$ where $r=-\frac{b}{a}$. subtracting b from both sides, so $a r=a s$. Deviding both sides by a, but $a \neq 0$.
We see that $\gamma=S$.
This means that if $s \neq r$, then $a s+b \neq 0$
This establishes the uniqueness part of the proof.

Proof Strategies:-
Finding proofs can be a challenging business.
When you take a statement to prove, you should first replace the terms by their definitions and then carefully analyze what the hypotheses and conclusion. After doing so, you can attempt to prove the result by using one of the Methods of poof. Generally, if the strut is a conditional stat, you should first try with a direct proof, if this fails, you can try with an indirect proof.
If neither of these approaches work, you might try a proof by Contradiction.
(1) Forward Reasoning:-

In a direct proof of a conditional stat,

1) Start with the premises.
2) Using these premises, together with axioms and known theorems, you can construct a proof Using a sequence of steps that leads to the conclusion.
This type of reasoning called forward reasoning.
It is the most common type of reasoning used to prove relatively simple results.
similarly, with Indirect proof of reasoning, you can
(1) start with negation of the conclusion
(2) Using segeence of steps and
(3) finally, obtain the negation of the premises.

Forward reasoning is difficult to construct to more more complicated results, because the reasoning in needed to reach the desired conclusion may be far from obvious. In such cases it may be helpful to use backward reasoning.
Backward Reasoning:-
For proving a stunt q, we try to find a stint p such that p is true and we can prove $p \rightarrow q$.
${ }^{2}$ A $x+4$ Asthmatic mean distinct
Example (1): prove that $\frac{x+4}{2} \geqslant \sqrt{x y}$ for positive ${ }^{2}$ cal numbers x and y.
sol:

$$
\begin{aligned}
& \frac{(x+y)}{2} \geqslant \sqrt{x y} \\
& \frac{(x+y)^{2}}{2} \geqslant x y \quad \text { (sqreare on both sides) } \\
& \frac{(x+y)^{2}}{4} \geqslant x y \\
& (x+y)^{2} \geqslant 4 x y \\
& (x+y)^{2}-4 x y \geqslant 0 \\
& (x-y)^{2} \geqslant 0 \quad \text { when } x \neq y
\end{aligned}
$$

Because $(x-y)^{2} \geqslant 0$ when $x \neq y$,
This given the backwerk reasoning.

Adapting Existing proofs:-
Existing proofs can be adapted to prove a new result. Existing proofs provide clues for new proof.
Example (1): We proved that $\sqrt{2}$ is irrational. We can adapt the proof to show that $\sqrt{3}$ is irrational?

Looking (searching) for Counterexample:-
Use of counterexample to show that certain statements are false.

A strut of the form $\forall x p(x)$ is false, we need only find a counterexample, i.e an example x for which $p(x)$ is false.

Example: (1) Every positive integer is the sum of the squares of two integersis false. (3 in not possible)
(2) "Every positive integer is the sum of the squares of three integers" is false.
so!. successive the integers as a sum of three squares.
we find that $1=0^{2}+0^{2}+1^{2}$

$$
\begin{aligned}
& 2^{2}=0^{2}+1^{2}+1^{2} \\
& 3=1^{2}+1^{2}+1^{2} \\
& 4=0^{2}+0^{2}+2^{2} \\
& 5=0^{2}+1^{2}+2^{2} \\
& 6=1^{2}+1^{2}+2^{2} \\
& 7=?
\end{aligned}
$$

It follows that τ is a Counter example.

The Role of open problems:- Many advances in Mathematics have been made by people trying to solve famous unsolved problems. Fermat's Last Theorem:-
The equation $x^{n}+y^{n}=z^{n}$ has no solutions in integers x, y, z with $x y z \neq 0$ Whenever n is an integer with $n>2$.

Validity problem for propositional and predicate Logic:-
A formula (well formed formula (wff)) of the propositional logic is an assertion involving propositional variables by Using the connectives $\lambda, V, \neg, \rightarrow, \leftrightarrow$ in a proper manner. Example: $P \wedge q$ is a whf of the propositional logic.
When we assign perticuler propositions to p and q, we are giving an interpretation for the formula.
Example: p : I have exam tom row and
q: I am going to study
PDq: I have exam tomorrow and I am going to study.
Tautology:- A whf of the propositional logic is a tautology if the whf always takes the value true whatever interpretation is given to it. Example: $P \vee T P$.
Contradition:- A wff which is always false for all interpretations is called a contradiction.
Example: $P \wedge \neg P$
Contingency:- A whf which is neither a tacetology nor a contradiction is called a contingency. Example: $p \rightarrow q$. The validity problem for the propositional logic is that given a af of propositional logic, does there exist an interpretation which will make the If take the value true.
Considering the propositional variables, as Bodean variables, thin in called Boolean satisfiability problem.
A problem is decidable that an algorithm to find ont if the given whf is a taectology or contingency. The simplest way is to draw the truth table for the whf The simplest way
and If for all assignments it takes the value
Tautology, otherwise it is contingency.

In the first order logic, a predicate has nossuments. If P is a n-place predicate constant and values $c_{1}, c_{2}, \ldots c_{n}$ are assigned to each of the individual variables, the result is a proposition.
Suppose the domain is U. If the value of $P\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is true for every choice of arguments $c_{1}, c_{2}, \ldots, c_{n}$ selected from U, then P is said to be valid in the domain U, If the Values $P\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is true for some (but not for all) choices of arguments selected from v, then P is said to be satisfiable in the doveain U, and the values $c_{1}, c_{2}, \ldots, c_{n}$ which make $P\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ true are said to satisfy P. If P is not satisfiable in the domain U, then we say P is unsatisfiable in U.
An expression involving predicate variables and quantifiers and connectives included in the proper manner is called a formula ($\omega f f$) of the first order logic.
Example: $\forall x P(x) \vee \forall x Q(x)$ is a whf.
When we assign perticular predicates to P and Q it is called an interpretation.
A Whf involving predicate variables is valid if it is true for every domain no matter how the predicate variables are interpreted. A Whf is said to be Satisfiable if there exist a domain and some interpretation of the predicate variables which makes it true.
If a whf in not true for any domain or interpretation it in unsatisfiable.
Example: $\forall x P(x) \rightarrow \exists x P(x)$ is true for all domains and interpretation and hence a valid if. $\exists x p(x) \rightarrow \exists x Q(x)$ may be true for Some interpretation but may not be true for Some other interpretation.
Let $P(x)$: x is a third semester B. Tech student $Q(x)$: x has taken a Course on Discrete mathematics. If Discrete mathematics is a Compulsory course for third semester students, $\exists x P(x) \rightarrow \exists x Q(x)$ will be true.

Suppose $Q(x)$ denotes x is female student
$\exists x P(x) \rightarrow \exists x Q(x)$ may not be true, if the class has no female candidates. If a whf is not true for any domain or interpretation, it is said to be unsatisfiable. $\forall x(P(x) \wedge \neg P(x)$ is unsatifiable. Given a whf of first order logic, find if it is valid or not. This in celled the validity problem of the first order logic.

A

Unit - b
Fundamentals of Graphs
R.Odhayaksernar

Graph
A graph $G=\langle V, E, \Phi\rangle$ consists of a non-empty Set V called set of vertices (w nodes or points) of the graph e; E is said. to be the set of edges of the graph and Φ is mapping from tho. Set E to a set q ordened (v) unordered pairs of elements of V. (ie., $\Phi: E \rightarrow V \times V$)
Assume that, the both sets V and E q a graph are finite.
Notation:- $G(V, E, \Phi)$ (r) $G(V, E)(x)$ simply G.
\rightarrow vertex set \rightarrow Edge set
Remarks * If an edge $e \in E$ is associated with an ordered pair (u, v) or an unordered pair (u, v) where $u, v \in V$, then e is said to connect or join the nodes u and v.

A The edge e is said to be incident on each of the nodes $u 2 v$.

Adjacent vertices Any pair of nodes which are connected by an edge in a graph is called adjcent nodes.

Directed graph (Digraph)
In a graph $G=\langle V, E\rangle$, an edge which is associated with an ordered pair of $V \times V$ is called a directed edge, while an edge which is associated with an unordered pair q nodes is called an undivectod-edge.

* A graph in which every edge is directed is called a directed graph ers digraph.
- A graph immhich event edge is undirected is called an undirected graph.
* If some edges are directed and some are undirected in a graph, the graph is called mixed.

Examples
(1)
(2)

0	0
v_{1}	v_{2}
0	v_{1}
v_{1}	

(3)

(5)

(4)

(b)

Here Example (1) is considered as either directed or undirected graph.
(2) $<$ (5) acre undirected graph.
(3), (4) (6) ane directed graph
(7) mixed graph.

Initial and Terminal Nodes
Let $G=\langle V, E\rangle$ be a graph and let $x \in E$ be a directed edge assoiested with the ordered pair of nodes $\langle u, v\rangle$. Then the age ' x ' is called as initiating (or) originating in the node ' u ' and terminating (er) ending in the node v.

The nodes ' u ' and ' v ' are also called the 'initial and terminal nodes of the edge ' x '.

Incident un a node
An edge $x \in E$ which joins the nodes ' 4 \&' 4 either it be directed or undirected, is called to be incident to the nodes ' u ' and ' v '.

Loop An edge of a graph which joins a node to itself is called a loop in a graph r.

Parallel edges
In a directed as well as undirected graphs, we may have certain pairs of nodes joined by move than one edge, such edges are called parallel edges

Multigraph
Any graph which contains some parallel edges is called multigraph.
(0.) Simple graph If there is no loops and parallel edges then the graph is called simple graph.

Examples

Pseudo graph:-
A graph is which loops and parallel edges are allowed is called a pseudo graph.

Example:-

weighted graph
A graph in which a weight (numerical values) are assigned to evens edge is called a weight od graph. es'.

Isolated nodes and Null graph
In a graph a node which is not adjacent to any other node is called an isolated node. A graph containing only isolated nodes is called a null graph.

Example:.

$$
\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{1} \\
& a_{1}= \\
& v_{3} \\
& v_{3}
\end{aligned}
$$

Graph Isomorphic
Two graphs are isomorphic if there exists a onetoone correspondence between the nodes of the trogroghs which preserves adjacency of the nodes as well as directions if the edges, if any.
ie. $\quad G=\left\langle V_{1}, E_{1}, \phi_{1}\right\rangle \cong G_{2}=\left\langle V_{2}, E_{2}, \phi_{2}\right\rangle$, if there exists a brjective function f: $V, \xrightarrow[0_{n i n}]{H-1} v_{2}$ s.t which fresemes the adjacency of the nodes and its direction (if any)

Examples:-

$$
\stackrel{N}{=}
$$

$\stackrel{N}{=}$

$$
G_{1} \cong a_{2} \quad\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \frac{1-1}{v_{2}+0}\left\{u_{1}^{\prime}, v_{2}^{\prime}, v_{4}^{\prime}, v_{4}^{\prime}\right\}
$$

Bent

not isomorphic

$$
c_{1} \neq a_{3}
$$

Degree of a vertex in undirected graphs
The degree q a vertex in an undirected graph is the number δ edges incident with it. (only for Simple undinection graph).
Note:- (1) The degree of a vertex ' V ' is denold by 'deg (v)'
(2) The degree δ the is olatad vertex is 'zero'.
(3) If the deg.ve $=1$ is called a pendant value.

Example:-

$$
\begin{aligned}
& \operatorname{deg}\left(v_{1}\right)=3 \\
& \operatorname{deg}\left(v_{2}\right)=1 \quad(\text { Pendant }) \\
& \operatorname{deg}\left(v_{3}\right)=2=\operatorname{deg}\left(v_{4}\right) .
\end{aligned}
$$

Sulsgraph
Let $G=\left\langle V_{a}, E_{G_{1}} \phi_{a}\right\rangle$ be a graph. A graph
$H=\left\langle V_{H}, E_{H}, \Phi_{H}\right\rangle$ is called a sulgraph of a graph G, if
$V_{H} \subseteq V_{G}$ and $E_{G} \subseteq E_{H}$ (ie., every edge oo H is also a edge G).

Note:-
If $V_{H} \doteq V_{G}$, then H is called a spanning subgraph $g G$.
A spanning graph of G reed not contain all its edges.
Example:-

G
(H), H_{2} are subgrophs
\rightarrow spanning
H_{3} is not sulsfraph.

$\xrightarrow{1+3}$

Some special simple graphs
Complete graph i
A simple graph, in which there is exactly one edge between each pair of distinct vertices, is called a complete graph.

The complete graph on' n ' vertices is denoted by K_{n}.
examples
k_{2}
k_{3}
k_{4}
-
$0 \longrightarrow$

K_{5}
k_{b}

Results 1) The number of edges in K_{n} is $n c_{2}$ or $\frac{n(n-1)}{2}$
2) The maximum number of edges in a simple graph with n ' vertices is $\frac{n(n-1)}{2}$.

Regular graph
If every vertex of a simple graph has the Same degree, then the graph is called a regular graph.

* If event vertex in a regular graph has degeree ' n ' then the graph is called n-regular.

Example:-

3-reguler graph.

Result:- D Even complete graph is a regular graph.
2) Every regular graph need not be a complete graph.

Bipartite graph

* If the vertex set V of a simple graph $G=(V, E)$ can be partitioned into two subsets N_{1} and V_{2} such that every edge of G connects a vertex in V_{1} and a vertex in V_{2} (so that no edge in G connects either two vertices in V_{1} or V_{21}, , then G is called a bipartite graph.
\Rightarrow Example

complete bipartite graph
If each vertex set v_{1} is Connected with
every vertex of V_{2} by an edge then G is called a complete bipartite graph. If V_{1} have m vertices and V_{2} have n vertices then the complete bipartite graph is denoted by $K_{m g n}$.

Example:-

$$
k_{2,3}
$$

$k_{3,3}$

Theorem (Fundamental theorems \& Graph Theory) (The Hassdshaking theorem)

In any graph the sum of degrees of its vertices is equal to twice the number of edges.

$$
\text { i.e., } \sum_{i=1}^{n} d\left(u_{i}\right)=2 e
$$

Prog:-
Let us consider a graph G with e edges and n vertices.
$v_{1}, v_{2}, \ldots, v_{n}$ are its vertices.
Since each edge contributes two degrees, the Sum q the degrees of all vertices in G is twice the number of edges in G.

$$
\text { ie, } \sum_{i} d\left(v_{i}\right)=2 e
$$

Example: verify the thectem

$$
\begin{aligned}
& d\left(v_{1}\right)=3 \quad d\left(v_{4}\right) \\
&=3 \\
&\left.d w_{2}\right)=4 \quad d\left(w_{5}\right) \\
&=1 \\
& d\left(v_{3}\right)=3 \\
& \therefore \quad \overline{2} d\left(v_{i}\right)=14 \\
& 2 e=2 \times 7=14
\end{aligned}
$$

Theonem The number of vertices of odd degree in an undirected graph is even. (or)

The number of odd vertices is always aves.
Proof:- Let $G=\langle V, E\rangle$ be the undirected graph.
Let V_{1} and V_{1} be the sets of vertices of G of even and odd degrees vespectively.

Then by previous theorems

$$
\begin{aligned}
& 2 e=\sum_{v_{i} \in V_{1}} \operatorname{deg}\left(v_{i}\right)+\sum_{v_{j} \in V_{2}} \operatorname{deg}\left(v_{j}\right) \\
& \text { (even) } \quad \text { (even) }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \sum_{v_{j} \in v_{2}} \operatorname{deg}\left(v_{j}\right) & =2 e-\sum_{v_{i} \in v_{1}} \operatorname{deg}\left(v_{i}\right) \\
& =\text { even }
\end{aligned}
$$

Since each $\operatorname{dog}\left(l_{j}\right)$ is odd, the number of terms contained in $\sum_{v_{j} \in V_{2}} \operatorname{deg}\left(v_{j}\right)$ is even.

Example:-
ci)

$$
d\left(v_{1}\right)=1 \quad d\left(v_{2}\right)=1 .
$$

\therefore The nos cod vertices is even.
(2)

$$
\begin{aligned}
& d\left(v_{1}\right)=2 \quad d\left(v_{4}\right)=3 M \\
& d\left(v_{3}\right)=2 \quad d\left(v_{4}\right)=4 \\
& \sim d\left(v_{5}\right)=1 . \\
& \text { even }\left(v_{2}, v_{5}\right) .
\end{aligned}
$$

Matrix Representation of Graphs
Adjacency matrix
When G is a simple graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ the matrix A or $\left(A_{C 3}\right) \equiv\left[a_{i j}\right]$, where $a_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \text { is an edge of } G \\ 0 & \text { otherwise }\end{cases}$ is called the adjacency mater of G.

Example:

$$
\left.A=\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{3} \\
v_{4}
\end{array} v_{2} v_{2} v_{3} v_{4} \begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Remarks (1) since a simple graph has no loops, ext diagonal entry of $A \quad v^{\prime} ; a_{i j}=0$, for $i=1,2, \ldots n$.
(2) The adjacent matrix of simple graph is symmetric.
(3) $\operatorname{deg}\left(l_{i}\right)$ is equal to the number δ i's in the $i^{\text {th }}$ row or $i^{\text {th }}$ Column.

Psendograph

$$
A=a\left[\begin{array}{llll}
a & b & c & d \\
1 & 2 & 0 & 1 \\
c \\
c & 0 & 3 & 0 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Directed graph

$$
A=a\left[\begin{array}{llll}
a & b & c & d \\
0 & 1 & 0 & 0 \\
c & 1 & 1 & 0 \\
d & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Definition Incidence matrix
If $G=(V, E)$ is an undirected graph with n vertices and m edges $e_{1}, e_{2}, \ldots e_{m}$, then the $(n \times m)$ matrix $B=\left[b_{i j}\right]$ where $b_{i j}=\left\{1\right.$ when edge e_{j} is incident on v_{i}
is called incidence matrix.

Ex:-

$$
\left.\begin{array}{l}
e_{1} \\
v_{1} \\
v_{2} \\
v_{3}
\end{array} e_{3} e_{4} \begin{array}{llll}
e_{5} \\
1 & 0 & 0 & 1
\end{array}\right]
$$

$H .2$
(1) Write the incidence matrix of the graph
(i)

(2) Write adjacency matrix
(i)

(ii)

(3) Draw the graphs repvesentod by the following adjacency matrices
(i) $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
(ii) $\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
[iii] $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
(4) Draw the graphs represented by the following incidence matrix
(i) $\begin{gathered}A \\ B \\ C \\ D\end{gathered}\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right]$
$\begin{array}{lllll}e_{1} & e_{2} & e_{3} & e_{4} & e_{r}\end{array}$
(ii) $A\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 1 \\ B \\ C & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1\end{array}\right]$

